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• Non incremental.

• Simultaneous access to all elements of the sentence.

• No reference of the information provided by each word to build the tree.
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Incremental Constituent Parsing

ENCODER

DECODER

I have a flight to Malta
State-of-the-Art System

• Bidirectional encoder: 

• BERT & ELMo.

• Non-incremental decoder.

• Kitaev & Klein (2018).

Constituent Tree

Incremental System

• Unidirectional encoder: 

• GPT & LSTMs.

• Incremental decoder.

• Transition-based.

• Sequence labeling.
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Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘 (by default, 𝑘 = 0) .

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φk(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

ENCODER

DECODER

I have a flight to Malta

Constituent Tree
What happens if delay 𝑘 > 0 ?
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Attach-Juxtapose (Yang & Deng, 2020)
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• Transition-based system.
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• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛
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• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

attach(target, parent)

Previous tree Updated tree

attach(S, VBP)
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I have a
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• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(VBP, DT, VP)
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• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(DT,  NN, NP)
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• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(NP,  ADP, NP)
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• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(ADP,  NN, PP)
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Full constituent tree!

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to  𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.



Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)
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• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

How to encode?

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.
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• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).



NP

I have

S

VBP

(1,S)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

?

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

?

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).



NP

I have a

S

VP

VBP

?

NP

DT NN

flight

(1,S) (2,VP) (4,NP)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

?

Incrementally obtain ℓ𝑖

and append right nodes.

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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Absolute encoding!

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).
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Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).



Experiments

• Multilingual benchmark: PTB + SPMRL (wo. Arabic).

• Baseline: Kitaev & Klein (2018).

• Bidirectional encoder: XLM-RoBERTa.

• Non-incremental decoder: span-based.

• Encoders:

• Bidirectional: 4-BiLSTM, XLM-RoBERTa.

• Unidirectional: 4-LSTM, BLOOM-560M, mGPT.

• Delay experiments: 𝑘 = 0, 1, 2.



                                                           
 

  

  

  

  

   
   

   

  

  

       

  
 

 
  

 
  

  
  

  

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results
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1. Control parsers (● ● ●) ≈ Kitaev & Klein, 2018 (■).

• Meaning? State-of-the-art relies on a bidirectional encoder.

2. Incremental parsers (■ ■ ■) considerably worse than Control (● ● ●) and KK (■).

• But introducing delay (⊠, ⊠, ⊠) significantly improves the performance.

Conclusions



                                                           
 

  

  

  

  

   
   

   

  

  

       

  
 

 
  

 
  

  
  

  

3. Sequence Labeling performance (■■) lags behind Attach-Juxtapose (■).

• Attach-Juxtapose (■) relies on a powerful neural decoder (GCN).

• Considering a larger decoder will improve the incremental results?

• ABS (■) and REL (■) are more benefited of delayed processing than AJ (■).

Conclusions
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