
From Partial to Strictly Incremental

Constituent Parsing

Ana Ezquerro Carlos Gómez-Rodríguez David Vilares

How do SoTA parsers work?

State-of-the-art System

How do SoTA parsers work?

I have a flight to Malta

State-of-the-art SystemFull sentence

How do SoTA parsers work?

I have a flight to Malta

State-of-the-art System

Full syntactic tree

Full sentence

How do SoTA parsers work?

I have a flight to Malta

State-of-the-art System

Full syntactic tree

Full sentence

• Non incremental.

• Simultaneous access to all elements of the sentence.

• No reference of the information provided by each word to build the tree.

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

?

Human

Full syntactic tree

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

I have a flight to Malta

Human

Full syntactic tree

Partial tree

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

I have a flight to Malta

Human

Full syntactic tree

Partial tree

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

I have a flight to Malta

Human

Full syntactic tree

Partial tree

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

I have a flight to Malta

Human

Full syntactic tree

Partial tree

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

I have a flight to Malta

Human

Full syntactic tree

Partial tree

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

State-of-the-art System

≠

I have a flight to Malta

Human

Full syntactic tree

Full tree!

Full sentence

Human-like Incremental Parsing

I have a flight to Malta

No incremental

≠

I have a flight to Malta

Incremental

Incremental Constituent Parsing

ENCODER

DECODER

I have a flight to Malta
State-of-the-Art System

• Bidirectional encoder:

• BERT & ELMo.

• Non-incremental decoder.

• Kitaev & Klein (2018).

Constituent Tree

Incremental System

• Unidirectional encoder:

• GPT & LSTMs.

• Incremental decoder.

• Transition-based.

• Sequence labeling.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a flight to Malta

Constituent Tree

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a flight to Malta

Constituent Tree
How incremental?

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a flight to Malta

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a flight

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a flight to

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).ENCODER

DECODER

I have a flight to Malta

Constituent Tree

Each processed word 𝑤𝑖 builds
a partial tree from 𝑤1 to 𝑤𝑖.

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘 (by default, 𝑘 = 0) .

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φk(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

ENCODER

DECODER

I have a flight to Malta

Constituent Tree
What happens if delay 𝑘 > 0 ?

From Partial to Strictly Incremental Constituent Parsing

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘 (by default, 𝑘 = 0) .

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φk(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

ENCODER

DECODER

I have a flight to Malta

Constituent Tree
Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

From Partial to Strictly Incremental Constituent Parsing

ENCODER

DECODER

I have a

Constituent Tree

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘 (by default, 𝑘 = 0) .

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φ𝑘(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

Φ2

Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

From Partial to Strictly Incremental Constituent Parsing

ENCODER

DECODER

I have a flight

Constituent Tree

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘.

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φ𝑘(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

Φ2

Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

From Partial to Strictly Incremental Constituent Parsing

ENCODER

DECODER

I have a flight to

Constituent Tree

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘.

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φ𝑘(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

Φ2

Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

From Partial to Strictly Incremental Constituent Parsing

ENCODER

DECODER

I have a flight to Malta

Constituent Tree

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘.

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φ𝑘(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

Φ2

Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

From Partial to Strictly Incremental Constituent Parsing

ENCODER

DECODER

I have a flight to Malta

Constituent Tree

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘.

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φ𝑘(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

Φ2

Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

From Partial to Strictly Incremental Constituent Parsing

ENCODER

DECODER

I have a flight to Malta

Constituent Tree

Incremental decoder

• Attach-Juxtapose from Yang & Deng (2020).

• Sequence Labeling from Gómez-Rodríguez & Vilares (2018).

Delayed incremental processing

• Parameter 𝑘.

• Incrementally encode each word 𝑤𝑖 with 𝑤1, … , 𝑤𝑖+𝑘.

• In practice: Φ𝑘(h𝑖 ⋯ h𝑖+𝑘) where Φ is a feed-forward network.

Φ2

Use 𝑤1, … , 𝑤𝑖+𝑘 to build a tree from 𝑤1 to 𝑤𝑖!

Attach-Juxtapose (Yang & Deng, 2020)

attach(target, parent)

Previous tree Updated tree

juxtapose(target, parent, new)

Previous tree Updated tree

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

Rightmost
chain

Partial tree

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

S start

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

Rightmost
chain

Partial tree

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I

NP

I

S

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

attach(target, parent)

Previous tree Updated tree

attach(S, NP)

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I have

NP

I have

S

VBP

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

attach(target, parent)

Previous tree Updated tree

attach(S, VBP)

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I have a

NP

I

have a

S

VP

VBP DT

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(VBP, DT, VP)

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I have a flight

NP

I

have

a

S

VP

VBP NP

DT NN

flight

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(DT, NN, NP)

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I have a flight to

NP

I

have

a

to

S

VP

VBP NP

NP ADP

DT NN

flight

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(NP, ADP, NP)

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I have a flight to Malta

NP

I

have

a to

S

VP

VBP NP

NP PP

DT NN ADP NN

flight Malta

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

juxtapose(target, parent, new)

Previous tree Updated tree

juxtapose(ADP, NN, PP)

Attach-Juxtapose (Yang & Deng, 2020)

Graph Convolutional Network

I have a flight to Malta

NP

I

have

a to

S

VP

VBP NP

NP PP

DT NN ADP NN

flight Malta

Full constituent tree!

• Transition-based system.

• Two actions: attach & juxtapose.

• Sentence of 𝑛 words to 𝑛 transitions.

𝑤1, … , 𝑤𝑛 → 𝑡1, … , 𝑡𝑛

• Graph Convolutional Network (GCN).

• Append subtrees to the rightmost chain.

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

NP

I have a to

S

VP

VBP

NP

NP PP

DT NN ADP NN

flight Malta

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a to

S

VP

VBP

NP

NP PP

DT NN ADP NN

flight Malta

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

How to encode?

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

Incrementally obtain ℓ𝑖

and append right nodes.

NP

I have a to

S

VP

VBP

NP

NP PP

DT NN ADP NN

flight Malta

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have

S

VBP

(1,S)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

?

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a

S

VP

VBP DT

(1,S) (2,VP)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

?

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a

S

VP

VBP

?

NP

DT NN

flight

(1,S) (2,VP) (4,NP)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a to

S

VP

VBP

NP

NP

DT NN ADP

flight

(1,S) (2,VP) (4,NP) (3,NP)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

?

Incrementally obtain ℓ𝑖

and append right nodes.

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a to

S

VP

VBP

NP

NP PP

DT NN ADP NN

flight Malta

(1,S) (2,VP) (4,NP) (3,NP) (4,PP)

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Incrementally obtain ℓ𝑖

and append right nodes.

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a to

S

VP

VBP

NP

NP PP

DT NN ADP NN

flight Malta

(1,S) (2,VP) (4,NP) (3,NP) (4,PP) <eos>Absolute:

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Absolute encoding!

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

NP

I have a to

S

VP

VBP

NP

NP PP

DT NN ADP NN

flight Malta

(1,S) (2,VP) (4,NP) (3,NP) (4,PP) <eos>Absolute:

(1,S) (1,VP) (2,NP) (-1,NP) (1,PP) <eos>Relative:

Absolute & Relative Indexing (Gómez-Rodríguez & Vilares, 2018)

Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1

• Sequence labeling method.

• Sentence of 𝑛 words to 𝑛 labels.

𝑤1, … , 𝑤𝑛 → ℓ1, … , ℓ𝑛

• Each label has 2 components: ℓ𝑖 = 𝑑𝑖 , 𝑐𝑖 .

• 𝑙𝑖: # common constituents of 𝑤𝑖 and 𝑤𝑖+1.

• Absolute: 𝑑𝑖 = 𝑙𝑖 .

• Relative: 𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖−1.

• 𝑐𝑖: lowest common constituent of 𝑤𝑖 and 𝑤𝑖+1.

• Two feed forward networks (𝑑𝑖 , 𝑐𝑖).

Experiments

• Multilingual benchmark: PTB + SPMRL (wo. Arabic).

• Baseline: Kitaev & Klein (2018).

• Bidirectional encoder: XLM-RoBERTa.

• Non-incremental decoder: span-based.

• Encoders:

• Bidirectional: 4-BiLSTM, XLM-RoBERTa.

• Unidirectional: 4-LSTM, BLOOM-560M, mGPT.

• Delay experiments: 𝑘 = 0, 1, 2.

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

• Incremental (mGPT): absolute (■), relative (■) and attach-juxtapose (■).

• Control (XLM): absolute (●), relative (●) and attach-juxtapose (●).

• Non-incremental (XLM): Kitaev & Klein, 2018 (■).

• Delay 1 (⊠, ⊠, ⊠) and Delay 2 (⊞, ⊞, ⊞).

Results

1. Control parsers (● ● ●) ≈ Kitaev & Klein, 2018 (■).

• Meaning? State-of-the-art relies on a bidirectional encoder.

2. Incremental parsers (■ ■ ■) considerably worse than Control (● ● ●) and KK (■).

• But introducing delay (⊠, ⊠, ⊠) significantly improves the performance.

Conclusions

3. Sequence Labeling performance (■■) lags behind Attach-Juxtapose (■).

• Attach-Juxtapose (■) relies on a powerful neural decoder (GCN).

• Considering a larger decoder will improve the incremental results?

• ABS (■) and REL (■) are more benefited of delayed processing than AJ (■).

Conclusions

Ana Ezquerro Carlos Gómez-Rodríguez David Vilares

Acknowledgements:

This work has received funding by the European Research Council (ERC), under the Horizon Europe research and
innovation programme (SALSA, grant agreement No 101100615), ERDF/MICINN-AEI (SCANNER-UDC, PID2020-
113230RB-C21), Xunta de Galicia (ED431C 2020/11), Grant GAP (PID2022-139308OA-I00) funded by
MCIN/AEI/10.13039/501100011033/ and by ERDF 'A way of making Europe', and Centro de Investigación de Galicia
'CITIC', funded by the Xunta de Galicia through the collaboration agreement between the Consellería de Cultura,
Educación, Formación Profesional e Universidades and the Galician universities for the reinforcement of the
research centers of the Galician University System (CIGUS).

Thanks for listening!

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61

