
Hierarchical Bracketing Encodings for
Dependency Parsing as Tagging

Ana Ezquerro David Vilares Anssi Yli-Jyrä Carlos Gómez-Rodríguez

Motivation: Dependency Parsing as Sequence Labeling (SL)

SL reframes the dependency parsing task (graph-based prediction) as token-level classification.

The ACL-2025 is located in Vienna

nsubj

det aux prep pobj

< \< < \\/ >/ >Strzyz et al. (2020):

R R R L LAmini et al. (2023):

0100 0110 0000 1111 1101 1100

LABEL SPACE:

unbounded

bounded (16)

bounded (8)

< \< < >/ >/ >Hierarchical (ours): bounded (12)

super vs auxiliary brackets
2

root

Gómez-Rodríguez et al. (2023):

brackets

4-bit (and 7-bit)

hexatag

https://aclanthology.org/2020.coling-main.223/
https://aclanthology.org/2023.acl-short.124/
https://aclanthology.org/2023.emnlp-main.393/

Optimal Hierarchical Bracketing Encodings (OHB)

• Contribution: Novel SL approach for dependency trees (bounded label space).
• Key concepts: (1) rope cover (2) superbrackets (3) auxiliary brackets.

3

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

How to encode?
1. Identify the proper rope cover.
2. Assign superbrackets (>, \, /, <).
3. Assign auxiliary brackets (>, <).

Projective dependency tree

< < \\>// > < \>Bracketing:

Step 1: Given a dependency tree 𝐺 = 𝑊,𝐴 ,
the proper rope cover is 𝑅 ⊆ 𝐴 such that:
1. Every 𝑎 ∈ 𝐴 − 𝑅 leans on some 𝑎′ ∈ 𝑅.
2. No 𝑎 ∈ 𝑅 leans on any other 𝑎′ ∈ 𝑅 − {𝑎}.

Step 2: Encode 𝑅 with superbrackets.

Step 3: Encode 𝐴 − 𝑅 with auxiliary brackets.

Superbrackets: >/ >

Auxiliary
brackets:

>/ >< < > <

The head of the auxiliary arcs is paired with a superbracket

The Bounded Space of Optimal Hierarchical Brackets (OHB)

• The rope cover is the set of arcs corresponding to the highest hierarchy level.
• OHB compresses the brackets of sub-dependencies with the superbrackets of the rope cover.
• There are a total of 12 labels. How?

4

Proof from 4-bit encoding (24 = 16 labels)
• 𝑏0 = 𝑤𝑖 has a left head.
• 𝑏1 = 𝑤𝑖 is the outermost dependent.
• 𝑏2 = 𝑤𝑖 has left dependents.
• 𝑏3 = 𝑤𝑖 has right dependents.

But { \</, \>/, </, \> } cannot occur in OHB since no 𝑎 ∈ 𝑅 leans on 𝑎′ ∈ 𝑅 − {𝑎}.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

0100 0000 1111 1000 0100 11004-bit:

Hierarchical >/ >< < > <

</

Never happens since
(𝑤𝑖 → 𝑤𝑑) is auxiliary.

Never happens since
(𝑤𝑑 ← 𝑤𝑖) is auxiliar.

𝑤𝑖 𝑤𝑑 𝑤ℎ 𝑤ℎ 𝑤𝑑 𝑤𝑖

\>

Expanding Hierarchical Brackets to Non-Projective Dependency Trees

• Hexatagging, 4-bit and HB encodings do not support non-projective trees.

We expand HB with subindices to support non-projective trees (unbounded space).
• Only closing superbrackets (>, \) have subindices.
• More auxiliary brackets is expanded (>, \, /, <).

5

Subindices indicate the number of superbrackets that need to
be skipped in the decoding process until matching.

Experiments and Results

6

• PTB and UD (9 languages) with XLM/XLNet.
• Baselines: Hexatagging (H+) and Biaffine (DM).
• 4-bit (B4) and projective OHB (Op) with pseudo-projectivity (+).
• 7-bit (B7) and non-projective OHB (Onp).

LA
S

LCM tokens/s
LA

S

Pareto Front (English-EWT)Performance (average)

Close performance:
• LAS: Op < Onp < B4 < Op

+ < B4
+ < B7.

• LCM: Op
+ < B4 < Op < B4

+ < Onp < B7.
But Op/Onp are faster (compact label space).

Code and Materials: https://github.com/anaezquerro/separ.

https://github.com/anaezquerro/separ

7

Hierarchical Bracketing Encodings for Dependency Parsing as Tagging

Ana Ezquerro David Vilares Anssi Yli-Jyrä Carlos Gómez-Rodríguez

Thank you for listening!

We acknowledge grants SCANNER-UDC (PID2020-113230RB-C21) funded by MICIU/AEI/10.13039/501100011033; GAP (PID2022-139308OA-I00) funded by
MICIU/AEI/10.13039/501100011033/ and ERDF, EU; LATCHING (PID2023-147129OB-C21) funded by /AEI/10.13039/501100011033 and ERDF, EU; and TSI-100925-2023-
1 funded by Ministry for Digital Transformation and Civil Service and ``NextGenerationEU'' PRTR; as well as funding by Xunta de Galicia (ED431C 2024/02), and CITIC, as a
center accredited for excellence within the Galician University System and a member of the CIGUS Network, receives subsidies from the Department of Education,
Science, Universities, and Vocational Training of the Xunta de Galicia. Additionally, it is co-financed by the EU through the FEDER Galicia 2021-27 operational program
(Ref. ED431G 2023/01). We also extend our gratitude to CESGA, the supercomputing center of Galicia, for granting us access to its resources.Furthermore, we
acknowledge the Faculty of Agriculture and Forestry of the University of Helsinki, as well as projects "Theory of Computational Logics" (352420) and "XAILOG" (345612,
345633) funded by the Research Council of Finland for the continued support of the third author during the multistage writing process.

Decoding with Hierarchical Brackets

Stack-based system where:
• Auxiliary brackets only match superbrackets.
• Superbrackets match any bracket.

8

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

<1 <2 > 3/3 >4 <5 >6

Stack Buffer

/0

(label indices are marked subscripts)

Decoding with Hierarchical Brackets

9

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

(label indices are marked subscripts)

<1 <2 > 3/3 >4 <5 >6

Stack Buffer

/0

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

10

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <1 to the stack.

<1 <2 > 3/3 >4 <5 >6

Stack Buffer

/0

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

11

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <1 to the stack.

<2 > 3/3 >4 <5 >6

Stack Buffer

/0 <1

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

12

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <2 to the stack.

<2 > 3/3 >4 <5 >6

Stack Buffer

/0 <1

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

13

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <2 to the stack.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

14

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match > 3 with the elements in the stack.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

15

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match > 3 with the elements in the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Decoding with Hierarchical Brackets

16

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match > 3 with the elements in the stack.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

17

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stop when a superbracket is found.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Decoding with Hierarchical Brackets

18

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stop when a superbracket is found.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

> 3/3 >4 <5 >6

Stack Buffer



Decoding with Hierarchical Brackets

19

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add /3 to the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

/3 >4 <5 >6

Stack Buffer

Decoding with Hierarchical Brackets

20

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add /3 to the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>4 <5 >6

Stack Buffer

/3

Decoding with Hierarchical Brackets

21

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >4 with the superbracket at the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>4 <5 >6

Stack Buffer

/3

Decoding with Hierarchical Brackets

22

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >4 with the superbracket at the stack.

>4 <5 >6

Stack Buffer

/3 

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

23

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <5 to the stack.

<5 >6

Stack Buffer

/3

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

24

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >6 with the elements stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>6

Stack Buffer

/3 <5

Decoding with Hierarchical Brackets

25

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >6 with the elements stack.



Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>6

Stack Buffer

/3 <5

Decoding with Hierarchical Brackets

26

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stop iteration when a superbracket is found.

 >6

Stack Buffer

/3 <5

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets

27

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stack Buffer

Stop iteration when a superbracket is found.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

Decoding with Hierarchical Brackets

28

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stack Buffer

All arcs are recovered!

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

