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Motivation: Dependency Parsing as Sequence Labeling (SL)

SL reframes the dependency parsing task (graph-based prediction) as token-level classification.

The ACL-2025 is located in Vienna
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Optimal Hierarchical Bracketing Encodings (OHB)

• Contribution: Novel SL approach for dependency trees (bounded label space).
• Key concepts: (1) rope cover (2) superbrackets (3) auxiliary brackets.

3

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

How to encode?
1. Identify the proper rope cover. 
2. Assign superbrackets (>, \, /, <).
3. Assign auxiliary brackets (>, <).

Projective dependency tree

< < \\>// > < \>Bracketing:

Step 1: Given a dependency tree 𝐺 = 𝑊,𝐴 , 
the proper rope cover is 𝑅 ⊆ 𝐴 such that:
1. Every 𝑎 ∈ 𝐴 − 𝑅 leans on some 𝑎′ ∈ 𝑅.
2. No 𝑎 ∈ 𝑅 leans on any other 𝑎′ ∈ 𝑅 − {𝑎}.

Step 2: Encode 𝑅 with superbrackets.

Step 3: Encode 𝐴 − 𝑅 with auxiliary brackets.

Superbrackets: >/ >

Auxiliary 
brackets:

>/ >< < > <

The head of the auxiliary arcs is paired with a superbracket



The Bounded Space of Optimal Hierarchical Brackets (OHB)

• The rope cover is the set of arcs corresponding to the highest hierarchy level.
• OHB compresses the brackets of sub-dependencies with the superbrackets of the rope cover.
• There are a total of 12 labels. How?
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Proof from 4-bit encoding (24 = 16 labels)
• 𝑏0 = 𝑤𝑖 has a left head.
• 𝑏1 = 𝑤𝑖 is the outermost dependent.
• 𝑏2 = 𝑤𝑖 has left dependents.
• 𝑏3 = 𝑤𝑖 has right dependents.

But { \</, \>/, </, \> } cannot occur in OHB since no 𝑎 ∈ 𝑅 leans on 𝑎′ ∈ 𝑅 − {𝑎}.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

0100 0000 1111 1000 0100 11004-bit:

Hierarchical >/ >< < > <

</

Never happens since 
(𝑤𝑖 → 𝑤𝑑) is auxiliary.

Never happens since 
(𝑤𝑑 ← 𝑤𝑖) is auxiliar.

𝑤𝑖 𝑤𝑑 𝑤ℎ 𝑤ℎ 𝑤𝑑 𝑤𝑖

\>



Expanding Hierarchical Brackets to Non-Projective Dependency Trees

• Hexatagging, 4-bit and HB encodings do not support non-projective trees.

We expand HB with subindices to support non-projective trees (unbounded space).
• Only closing superbrackets (>, \) have subindices.
• More auxiliary brackets is expanded (>, \, /, <).
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Subindices indicate the number of superbrackets that need to 
be skipped in the decoding process until matching.



Experiments and Results
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• PTB and UD (9 languages) with XLM/XLNet.
• Baselines: Hexatagging (H+      ) and Biaffine (DM    ).
• 4-bit (B4      ) and projective OHB (Op      ) with pseudo-projectivity (+).
• 7-bit (B7      ) and non-projective OHB (Onp ).

LA
S

LCM tokens/s
LA

S

Pareto Front (English-EWT)Performance (average)

Close performance:
• LAS: Op < Onp < B4 < Op

+ < B4
+ < B7.

• LCM: Op
+ < B4 < Op < B4

+ < Onp < B7.
But Op/Onp are faster (compact label space).

Code and Materials: https://github.com/anaezquerro/separ.

https://github.com/anaezquerro/separ
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Decoding with Hierarchical Brackets

Stack-based system where:
• Auxiliary brackets only match superbrackets.
• Superbrackets match any bracket.
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

<1 <2 > 3/3 >4 <5 >6

Stack Buffer

/0

(label indices are marked subscripts)



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

(label indices are marked subscripts)

<1 <2 > 3/3 >4 <5 >6

Stack Buffer

/0

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <1 to the stack.

<1 <2 > 3/3 >4 <5 >6

Stack Buffer

/0

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <1 to the stack.

<2 > 3/3 >4 <5 >6

Stack Buffer

/0 <1

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <2 to the stack.

<2 > 3/3 >4 <5 >6

Stack Buffer

/0 <1

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <2 to the stack.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets

14

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match > 3 with the elements in the stack.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match > 3 with the elements in the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2



Decoding with Hierarchical Brackets

16

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match > 3 with the elements in the stack.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stop when a superbracket is found.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

> 3/3 >4 <5 >6

Stack Buffer

/0 <1 <2



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stop when a superbracket is found.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

> 3/3 >4 <5 >6

Stack Buffer





Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add /3 to the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

/3 >4 <5 >6

Stack Buffer



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add /3 to the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>4 <5 >6

Stack Buffer

/3



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >4 with the superbracket at the stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>4 <5 >6

Stack Buffer

/3



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >4 with the superbracket at the stack.

>4 <5 >6

Stack Buffer

/3 

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Add <5 to the stack.

<5 >6

Stack Buffer

/3

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >6 with the elements stack.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>6

Stack Buffer

/3 <5



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Match >6 with the elements stack.



Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.

>6

Stack Buffer

/3 <5



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stop iteration when a superbracket is found.

 >6

Stack Buffer

/3 <5

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.





Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stack Buffer

Stop iteration when a superbracket is found.

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.



Decoding with Hierarchical Brackets
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Stack Buffer

All arcs are recovered!

Stack-based system where:
• Super right dependent (/) matches super-left head (>).
• Super right head (<) matches super-left dependent (\).
• Auxiliary left dependent (<) matches > and \.
• Auxiliary right dependent (>) matches < and /.
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