
OPTIMAL HIERARCHICAL BRACKETING ENCODING

Hierarchical Bracketing Encodings for Dependency Parsing as Tagging

We acknowledge grants SCANNER-UDC (PID2020-113230RB-C21) funded by MICIU/AEI/10.13039/501100011033; GAP (PID2022-139308OA-I00) funded by MICIU/AEI/10.13039/501100011033/ and ERDF, EU; LATCHING (PID2023-147129OB-C21) funded by /AEI/10.13039/501100011033
and ERDF, EU; and TSI-100925-2023-1 funded by Ministry for Digital Transformation and Civil Service and ``NextGenerationEU'' PRTR; as well as funding by Xunta de Galicia (ED431C 2024/02), and CITIC, as a center accredited for excellence within the Galician University System and a
member of the CIGUS Network, receives subsidies from the Department of Education, Science, Universities, and Vocational Training of the Xunta de Galicia. Additionally, it is co-financed by the EU through the FEDER Galicia 2021-27 operational program
(Ref. ED431G 2023/01). We also extend our gratitude to CESGA, the supercomputing center of Galicia, for granting us access to its resources.Furthermore, we acknowledge the Faculty of Agriculture and Forestry of the University of Helsinki, as well as projects
"Theory of Computational Logics" (352420) and "XAILOG" (345612, 345633) funded by the Research Council of Finland for the continued support of the third author during the multistage writing process.

Ana Ezquerro, David Vilares, Anssi Yli-Jyrä, Carlos Gómez-Rodríguez

DEPENDENCY PARSING AS SEQUENCE LABELING

The ACL-2025 is located in Vienna

nsubj

det aux
prep pobj

root

Bracketing:
Strzyz et al. (2020)

< \< < \\>/ >/ >

Hexatagging:
Amini et al. (2023)

R R R L L

0100 0110 0000 1111 1101 1100

Label Space

unbounded

bounded (8)

bounded (16)

NEW! (ours): < \< < >/ >/ > bounded (12)

PRELIMINARIES

Yli-Jyrä (2019)

Let 𝐺 = (𝑊, 𝐴) be a dependency tree. The proper rope cover is 𝑅 ⊆ 𝐴 such that:

1. Every 𝑎 ∈ 𝐴 − 𝑅 leans on some 𝑎′ ∈ 𝑅.
2. No 𝑎 ∈ 𝑅 leans on any other 𝑎′ ∈ 𝑅 − {𝑎}.

Yli-Jyrä (2019) proves that the proper rope cover of a graph is unique.

The ACL-2025 is located in Vienna

nsubj

det aux
prep pobj

root

Contribution: Novel SL approach for projective dependency parsing (12 labels).

<root>

Superbrackets
> \ / <

Auxiliary brackets
> << \< < >/ >/ >/

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Projective dependency tree

1. Identify proper rope cover (𝑅).
2. Assign superbrackets (>, \, /, <).
3. For each arc 𝑎 ∈ 𝑅, find those arcs that lean on 𝑎

(auxiliary arcs) and assign auxiliary brackets (>, <).

Step 1: Identify 𝑅

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Step 2: Assign superbrackets

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

/ >/ >

Step 3: Assign auxiliary brackets

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

/ >/ >< < > <

Note that (𝑤0 → 𝑤3) ∈ 𝑅 is represented with / and >,
but (𝑤3 → 𝑤2) is represented with < and >.

OPTIMAL HIERARCHICAL BRACKETING DECODING

• Similar to the standard bracketing decoding (Strzyz et al., 2020).
• Stack-based system that parses the bracket sequence:

• Matching opening (<, /) with closing (\, >) super brackets.
• Matching < with (>, \) and > with (<, /).

• The brackets are processed from left to right until the buffer is empty.
• In the initial state the first element in the stack is always /.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

/ >/ >< < > < Buffer

Stack

Initial state:

Example: < matches > to recover (𝑤2 ← 𝑤3)

pushes

NON-PROJECTIVE EXTENSION FOR HIERARCHICAL BRACKETING

The OHB encoding does not recover crossing arcs.
Solution: Add indices to closing superbrackets (\, >) and auxiliary
brackets (>, \, /, <) to skip matches during the decoding step.
Drawback: The label space becomes unbounded.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

/ \< >< < >/ >

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Non-Projective Dependency Tree Decoded Tree with the projective decoding

!

Error: (𝑤2 ← 𝑤4) is not recovered since it crosses (𝑤1← 𝑤3)/ \< >< <1 >/ >

Use subindex 1 to indicate that <1 matches with the
second superbracket found (> at 𝑤4).

EXPERIMENTS AND RESULTS

• PTB and UD (9 languages) with XLM/XLNet .
• Baselines: Hexatagging (H+) and Biaffine (DM).
• 4-bit (B4) and projective OHB (Op) with pseudo-projectivity (+).
• 7-bit (B7) and non-projective OHB (Onp).

Pareto Front (English-EWT)

speed (tokens/s)

LA
S

Label Space Analysis:
• B4 always requires 16 labels, while Op requires 12 labels.
• Except for Ancient-Greek, Onp requires less labels than B7.

LA
S

LCM

Performance (average)

Close performance:
• LAS: Op < Onp < B4 < Op

+ < B4
+ < B7.

• LCM: Op
+ < B4 < Op < B4

+ < Onp < B7. But Op/Onp are faster (compact label space).

Code and Materials: https://github.com/anaezquerro/separ.

The Bounded Space of Optimal Hierarchical Brackets (OHB)

Gómez-Rodríguez et al. (2023)

Proof from 4-bit encoding (24 = 16 labels)

• 𝑏0 = 𝑤𝑖 has a left head.
• 𝑏1 = 𝑤𝑖 is the outermost dependent.
• 𝑏2 = 𝑤𝑖 has left dependents.
• 𝑏3 = 𝑤𝑖 has right dependents.

from Gómez-Rodríguez et al. (2023).
But {\</, \>/, </, \>} cannot occur in OHB
since no 𝑎 ∈ 𝑅 leans on 𝑎′ ∈ 𝑅 − {𝑎}.

𝑤𝑖 𝑤ℎ

</

𝑤𝑑

Never happens since (𝑤𝑖 → 𝑤𝑑) is auxiliary.

𝑤ℎ 𝑤𝑖

\>

𝑤𝑑

Never happens since (𝑤𝑑 ← 𝑤𝑖) is auxiliary.

4-bit:
Gómez-Rodríguez et al. (2023)

Note that \</ and \>/ cannot occur since they contain </ and \>.

https://aclanthology.org/2020.coling-main.223/
https://aclanthology.org/2023.acl-short.124/
https://aclanthology.org/W19-3115/
https://aclanthology.org/2020.coling-main.223/
https://github.com/anaezquerro/separ
https://aclanthology.org/2023.emnlp-main.393/
https://aclanthology.org/2023.emnlp-main.393/

	Slide 1

