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DEPENDENCY PARSING AS SEQUENCE LABELING
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PRELIMINARIES

Yli-Jyrä (2019)

Let 𝐺 = (𝑊, 𝐴) be a dependency tree. The proper rope cover is 𝑅 ⊆ 𝐴 such that:

1. Every 𝑎 ∈ 𝐴 − 𝑅 leans on some 𝑎′ ∈ 𝑅.
2. No 𝑎 ∈ 𝑅 leans on any other 𝑎′ ∈ 𝑅 − {𝑎}.

Yli-Jyrä (2019) proves that the proper rope cover of a graph is unique.
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Contribution: Novel SL approach for projective dependency parsing (12 labels).
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Projective dependency tree

1. Identify proper rope cover (𝑅).
2. Assign superbrackets (>, \, /, <).
3. For each arc 𝑎 ∈ 𝑅, find those arcs that lean on 𝑎 

(auxiliary arcs) and assign auxiliary brackets (>, <).

Step 1: Identify 𝑅

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

Step 2: Assign superbrackets

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0
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Step 3: Assign auxiliary brackets

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

/ >/ >< < > <

Note that (𝑤0 → 𝑤3) ∈ 𝑅 is represented with / and >, 
but (𝑤3 → 𝑤2) is represented with < and >.

OPTIMAL HIERARCHICAL BRACKETING DECODING

• Similar to the standard bracketing decoding (Strzyz et al., 2020).
• Stack-based system that parses the bracket sequence:

• Matching opening (<, /) with closing (\, >) super brackets.
• Matching < with (>, \) and  > with (<, /).

• The brackets are processed from left to right until the buffer is empty.
• In the initial state the first element in the stack is always /.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6𝑤0

/ >/ >< < > < Buffer

Stack

Initial state:

Example: < matches > to recover (𝑤2 ← 𝑤3)

pushes

NON-PROJECTIVE EXTENSION FOR HIERARCHICAL BRACKETING

The OHB encoding does not recover crossing arcs.
Solution: Add indices to closing superbrackets (\, >) and auxiliary 
brackets (>, \, /, <) to skip matches during the decoding step.
Drawback: The label space becomes unbounded.
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Non-Projective Dependency Tree Decoded Tree with the projective decoding

!

Error: (𝑤2 ← 𝑤4) is not recovered since it crosses (𝑤1← 𝑤3)/ \< >< <1 >/ >

Use subindex 1 to indicate that <1 matches with the 
second superbracket found (> at 𝑤4).

EXPERIMENTS AND RESULTS

• PTB and UD (9 languages) with XLM/XLNet .
• Baselines: Hexatagging (H+      ) and Biaffine (DM    ).
• 4-bit (B4      ) and projective OHB (Op      ) with pseudo-projectivity (+).
• 7-bit (B7      ) and non-projective OHB (Onp      ).
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Label Space Analysis:
• B4 always requires 16 labels, while Op requires 12 labels.
• Except for Ancient-Greek, Onp requires less labels than B7.
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Performance (average)

Close performance:
• LAS: Op < Onp < B4 < Op

+ < B4
+ < B7.

• LCM: Op
+ < B4 < Op < B4

+ < Onp < B7. But Op/Onp are faster (compact label space).

Code and Materials: https://github.com/anaezquerro/separ.

The Bounded Space of Optimal Hierarchical Brackets (OHB)

Gómez-Rodríguez et al. (2023)

Proof from 4-bit encoding (24 = 16 labels)

• 𝑏0 = 𝑤𝑖  has a left head.
• 𝑏1 = 𝑤𝑖 is the outermost dependent.
• 𝑏2 = 𝑤𝑖  has left dependents.
• 𝑏3 = 𝑤𝑖  has right dependents.

from Gómez-Rodríguez et al. (2023).
But {\</, \>/, </, \>} cannot occur in OHB 
since no 𝑎 ∈ 𝑅 leans on 𝑎′ ∈ 𝑅 − {𝑎}.

𝑤𝑖 𝑤ℎ

</

𝑤𝑑

Never happens since (𝑤𝑖 → 𝑤𝑑) is auxiliary.

𝑤ℎ 𝑤𝑖

\>

𝑤𝑑

Never happens since (𝑤𝑑 ← 𝑤𝑖) is auxiliary.

4-bit:
Gómez-Rodríguez et al. (2023)

Note that \</ and \>/ cannot occur since they contain </ and \>.
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