
MASTER’S THESIS

Graph Parsing as Sequence Labeling

Student: Ana Xiangning Pereira Ezquerro

Supervisors: Carlos Gómez Rodríguez

David Vilares Calvo

A Coruña, March 6, 2025.

I don’t want a life that is easy, but one that is worth it.

Acknowledgements

I would first like to acknowledge the effort and dedication of my two mentors, Carlos and David,
for guiding me through a significant part of my academic journey and sharing their invaluable
experience and knowledge. Special thanks to Carlos, who serves as a great inspiration to me, both
as a researcher and as a person, and to David, for all the trust he places in me and his willingness to
help me through the most challenging moments.

I would also like to thank all the members of LyS group for the great moments shared during
coffee breaks and our travels abroad, as well as the professors and students from the School of
Computer Science with whom I have shared almost six years of my life. To those who, despite time
and distance, continue to hold me in their thoughts, and even to those who are no longer with me.
Without your presence and support, I would not be where I am today.

Finally, my deepest gratitude goes to my family and my dearest friends, both those who are
with me in my daily life and those who live far away. I know I am not always the easiest person,
yet you remain by my side, offering me your patience, love and support. Thank you for being such
an essential part of my life. I hope to make you proud to have me as part of yours.

Abstract

Graph processing is a fundamental task in Computer Science and Artificial Intelligence that in-
volves modeling relationships between nodes in structured data. State-of-the-art approaches, while
effective, suffer from quadratic complexity since they process all possible paired connections be-
tween the nodes of an input graph, making them computationally expensive for large-scale appli-
cations. To address this challenge, we incorporate the principles of the sequence-labeling paradigm
to graph parsing, proposing new graph linearizations that encode graph structures as sequences
of labels. This transformation enables parsing with linear complexity, significantly improving ef-
ficiency. Our work builds on state-of-the-art neural sequence-labeling frameworks and introduces
both bounded and unbounded linearizations tailored for graph parsing. We conduct an empiri-
cal evaluation, comparing our approach against traditional graph-based methods on benchmark
datasets. The results demonstrate that our proposed linearizations achieve competitive performance
while reducing computational overhead, paving the way for more scalable and efficient graph pro-
cessing.

Keywords:

• Natural Language Processing

• Artificial Neural Networks

• Graph Parsing

• Sequence labeling

• Large Language Models

Contents

1 Introduction 1
1.1 Thesis’ overview: Goals and report structure . 3
1.2 Methodology . 3
1.3 Tools, materials and resources . 5

2 Background 7
2.1 Neural networks for NLP . 7

2.1.1 Word embeddings . 8
2.1.2 Recurrent Neural Networks . 9
2.1.3 Transformer block . 10
2.1.4 Large Language Models . 11

2.2 Graph Parsing . 13
2.2.1 Graph-based approaches . 13
2.2.2 Transition-based systems . 15

2.3 Sequence-labeling for Graph Parsing . 17
2.3.1 Motivation . 18
2.3.2 Formalization . 19

3 Unbounded linearizations 20
3.1 Positional encodings . 20
3.2 Bracketing encoding . 22

4 Bounded linearizations 30
4.1 4k-bit encoding . 31
4.2 6k-bit encoding . 40

5 Framework and Experiments 46
5.1 Neural framework . 46
5.2 Evaluation metrics . 47
5.3 Training configuration . 48
5.4 Datasets . 48

i

6 Results 51
6.1 Performance evaluation . 51
6.2 Speed analysis . 52

7 Conclusion 57

Glossary 59

Acronyms 61

Symbols 62

Bibliography 63

ii

List of Figures

1.1 Semantic graph extracted from the SemEval 2015 Task 18 dataset 2
1.2 Gantt diagram . 4

2.1 Visualization of the forward pass in the vanilla RNN. 10
2.2 Different paradigms for LLMs. 11
2.3 Visualization of the biaffine system. 14
2.4 Dependency tree extracted from the English EWT dataset. 17
2.5 Visualization of a SL system for graph parsing. 18

3.1 Absolute (A), relative (R) and bracketing (B) encoding. 21
3.2 Crossing examples for the bracketing encoding. 26

4.1 Graph example and notation of the 4k-bit labels with k = 3 (B43) 31
4.2 4k-bit encoding of the graph introduced in Figure 4.1 32
4.4 Comparison of the bracketing and 4k-bit encoding 38
4.5 Graph example of Figure 4.1 and notation of the 6k-bit labels with k = 3 (B63) . . . 40

5.1 Neural framework proposed for our SL approach at inference time. 47
5.2 Neural framework proposed for our SL approach at training time. 47

6.1 Pareto Front for the SDP in-distribution sets. 55
6.2 Pareto Front for the IWPT test sets. 56

iii

List of Tables

2.1 Covington decoding for the the semantic graph in Figure 1.1 16

3.1 Bracketing decoding as a deductive system . 24
3.2 Bracketing decoding for the graph in Figure 3.1 . 25
3.3 Correct decoding process for the graph in Figure 3.2c. 28

4.1 4k-bit decoding as a deductive system. 35
4.2 4k-bit decoding process for the subset T1 of the graph in Figure 4.2 37
4.3 Comparison of the bracketing and 4k-bit decoding of Figure 4.4 39
4.4 6k-bit decoding as a deductive system. 43
4.5 6k-bit decoding for T1 in Figure 4.5 . 44

5.1 Treebank statistics for the SDP dataset. 49
5.2 Treebank statistics for the IWPT dataset. 50

6.1 SDP performance in the in-distribution set. 52
6.2 SDP performance on the out-of-distribution set. Same notation as in Table 6.1. . . . 52
6.3 IWPT performance on the test set. 53

iv

Chapter 1

Introduction

Graph processing is a core task in Computer Science, given the ubiquity of graphs in repre-
senting complex relationships across various domains. From social networks to biological

structures and logistic systems, graphs provide a powerful and versatile abstraction for modeling
entities and their interconnections. Effective graph processing is essential for computer systems
in order to solve problems such as pathfinding, clustering and relationship inference, which are
common in many practical applications.

Graphs have been extended in multiple Artificial Intelligence (AI) problems, offering a natural
way to encode complex relationships and dependencies in data. In areas like recommender sys-
tems, graphs represent user-item interactions [1, 2], while in bioinformatics, they model molecular
structures and biological pathways [3]. Similarly, in computer vision, scene graphs capture spatial
and semantic relationships among objects [4]. These applications leverage graph-based representa-
tions to uncover patterns, propagate information, and enable inference in ways that traditional data
structures often cannot achieve.

In Natural Language Processing (NLP), graph processing allows capturing the rich structural and
relational information inherent in language. Dependency and constituency parsing [5] use graphs to
represent syntactic and semantic structures, facilitating deeper linguistic analysis. Recent advances,
such as Graph Neural Networks [6, 7, 8], have extended the capabilities of traditional graph methods
by enabling learning directly from graph-structured data, leading to improvements in tasks like
text classification [9], machine translation [10] and question answering [11]. This integration of
graph processing techniques into NLP has opened new frontiers in understanding and leveraging
the complexities of human language.

This project focuses on graph parsing, an NLP task that aims to accurately modeling the rela-
tionships between nodes in a given input graph. The nature of these relationships defines the specific
objectives of the task, which may involve extracting semantic relations (commonly referred to as
semantic parsing [12]), identifying causal links for emotions (emotion-cause analysis [13]), analyzing
syntactic dependencies [14], or capturing sentiments [15]. Figure 1.1 shows a example of a semantic
graph extracted from the SemEval 2015 Task 18 dataset [16]. This graph represents the semantic
relationships between the words of the sentence “Mr. Vinken is a chairman of Elsevier NV., the Dutch

publishing group”, where the words represent the vertices of the graph and the edges represent the
paired semantic relations.

1

Mr. Vinken is chairman of Elsevier N.V. , the Dutch publishing group

/ >< \>/ >< \/ ><< \ / / / \>>>

comp ARG1 ARG2 ARG1 ARG2 comp

appos

BV

ARG1

comp

TOP

Figure 1.1: Semantic graph extracted from the SemEval 2015 Task 18 dataset [16]. The symbols below
represent the bracketing encoding, which will be explained in detail in Section 3.2. Intuitively, in the
bracketing encoding each node’s label (e.g. ><< for Elsevier) is drawing the incoming and outgoing
arcs with arrow or slash symbols aligned with the arc’s direction. The symbol > is underlined to
remark that the associated arc is not closed by any head, thus being reserved for the root node,
marked with the label TOP.

State-of-the-art (SoTA) approaches for graph parsing, named graph-based approaches [17, 18],
represent graphs as combinations of all possible pairwise relations between nodes, leading to a
quadratic increase in complexity as the graph’s size (number of nodes) grows. Alternatives such
as transition-based systems [19, 20] can reduce this complexity to the number of arcs of the graph,
leading to a substantial improvement in terms of efficiency when the graph is sparse, but still limited
to the same quadratic complexity in the worst case.

This project proposes several graph linearizations (also named as graph encodings) to reframe
graph parsing as a sequence-labeling task. Sequence Labeling (SL) approaches allow representing
complex structures like graphs as a sequence of labels that matches the size of the input, reducing
the complexity of the parsing task to linear. Figure 1.1 shows an example of a graph linearization
known as bracketing encoding, where each node’s label represents the incoming and outgoing arcs
using arrow or slash symbols aligned with the arc’s direction.

Previous work has proposed SL approaches for constituent [21, 22] and dependency parsing [23,
24, 25], leveraging the more restricted structure of constituent and dependency trees. Since graphs
are more expressive, linearizing their architecture poses a great challenge in NLP. To the best of our
knowledge, this problem has not been thoroughly addressed until now, although it holds a common
interest not only in NLP but also in other AI fields. By converting complex graph structures into
linear representations, SL approaches simplify processing and computation, making it a valuable
tool for tasks that might require graph processing.

We adopt the SoTA neural framework for SL [21, 24], where a large neural encoder is used to
contextualize information of an input sequence and compute dense vector representations, and a
simple neural decoder is used to predict the sequence of labels from the latent vectors as a classi-
fication task. The full architecture is trained end-to-end with an annotated treebank and evaluated
with a common benchmark [12]. Thus, inspired by previous works on dependency parsing [23, 25],
this project proposes a set of bounded and unbounded linearizations for graph parsing and con-
ducts and extensive experimental study to assess their performance and efficiency against traditional
graph-based approaches.

2

1.1 Thesis’ overview: Goals and report structure

The main goals of this project are:

1. Proposing several bounded and unbounded graph linearizations, analyzing their properties,
computational complexity, and the transformations required for the encoding and decoding
processes. This includes developing the encoding algorithm, which transforms the graph
structure into a sequence of labels, ensuring that the original graph information can be fully
recovered from the compressed representation with the decoding algorithm.

2. Implementing a neural framework designed to train our SL-based parsers using annotated
treebanks. The framework incorporates SoTA neural architectures and optimization tech-
niques, enabling effective learning of the proposed graph encodings.

3. Analyzing the performance and efficiency of our systems against potential baselines. This
analysis assess factors such as parsing accuracy, computational overhead, scalability, and gen-
eralization to unseen graph structures.

Following these principles, the structure of this report is divided into seven chapters. Chapter 1
provides a general overview of the thesis, including a description of its goals, the methodology used,
and the materials supporting it. Chapter 2 reviews the background required to understand previ-
ous work on graph parsing and explores how it can be reformulated as a SL task, revisiting Deep
Learning (DL) models commonly used for parsing and focusing on prior linearization approaches
that inspired this project. Chapters 3 and 4 introduce the unbounded and bounded encodings de-
veloped in this project, defining their transformation and analyzing their properties and theoretical
foundations. Chapter 5 outlines the experimental methodology, describing the neural framework
implemented to train our SL-based parsers, the datasets and evaluation metrics selected, the opti-
mization strategies, and the baseline systems against which our models are compared. Chapter 6
presents the results obtainedwith our parsers and provides an in-depth analysis of their performance
and efficiency relative to graph-based baselines. Finally, Chapter 7 summarizes the main insights of
the project, highlights its contributions, and discusses potential avenues for future research.

1.2 Methodology

The development of this thesis follows an incremental-iterative approach. At the outset, a set of
overarching objectives was defined, accompanied by approximate timelines for completing each
iteration. Weekly meetings were held throughout the project to propose new iterations and review
progress on previous ones. These meetings aimed to validate the implemented models and their
results while identifying and addressing any errors or anomalies encountered during development.

Figure 1.2 shows the Gantt diagram of the project timeline. The project started on January 2024
and it was extended until February 2025. Its main contribution was presented as a long paper, and
accepted, at the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP

3

https://2024.emnlp.org/
https://2024.emnlp.org/

2024)1, under the title “Dependency Graph Parsing as Sequence Labeling” [26]. The corresponding
iterations and conference deadlines are also displayed in the Gantt diagram.

2024 2025

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

(1) SoTA review

(2) Unbounded encodings

Design

Implementation

Experiments

(3) Bounded encodings

Design

Implementation

Experiments

(4) Graph-based baseline

Implementation

Experiments

(5) EMNLP application

Anonymous submission

Additional experiments

Camera-ready

Presentation materials

(6) Thesis submission

Proposal

Report

EMNLP
submission

EMNLP
acceptance

EMNLP
conference

EMNLP
camera-ready

Thesis
proposal

Thesis
deadline

Figure 1.2: Gantt diagram illustrating the project timeline and milestones. Green bars denote itera-
tions focused on report writing or literature review; yellow bars indicate coding iterations, and red
bars represent iterations dedicated to experiments. Purple bars display grouped iterations.

The workflow of the project is distributed in five groups of iterations .

1. SoTA review: The initial phase focused on reviewing relevant works in graph parsing and
existing linearization systems for other parsing tasks (such as dependency parsing). This was a
crucial step for justifying the use of SL approaches for graph parsing and evaluating potential
algorithms for effective graph linearization.

2. Unbounded encodings: These iterations were dedicated to designing, implementing, and
deploying unbounded encodings within the neural framework. This project proposes three
unbounded encodings that are detailed Chapter 3. In the Gantt diagram, the implementation
phase follows the completion of the design iteration. However, the experimental phase over-
laps with the implementation phase due to the independent nature of each encoding. Once
the first unbounded encoding was implemented, experiments were initiated while the devel-
opment of subsequent encodings continued in parallel. This overlapping workflow allowed
for an efficient use of time and resources, optimizing the overall project timeline.

1 According to the CORE 2023 ranking, the EMNLP is a top-tier (A*) venue highly regarded in the field of AI and NLP
(FoR 4602), with an average rating of 5.0.

4

https://2024.emnlp.org/
https://2024.emnlp.org/
https://2024.emnlp.org/
https://aclanthology.org/2024.emnlp-main.659/
https://portal.core.edu.au/conf-ranks/?search=emnlp&by=all&source=CORE2023&sort=atitle&page=1

3. Bounded encodings: This phase groups the design, implementation, and testing of bounded
encodings. The project introduces two bounded encodings, focusing on their unique charac-
teristics and performance, which are elaborated on in subsequent sections (Chapter 4).

4. Graph-based baseline: To ensure a fair evaluation of the proposed SL parsers, a SoTA graph-
based parser was selected, integrated into the neural framework, and assessed under identical
conditions. This comparison provides a robust benchmark for evaluating the performance of
the proposed methods.

5. EMNLP application. The project was submitted to EMNLP 2024, requiring multiple steps,
including the preparation of an anonymous submission, starting in April 2024 and conclud-
ing in June 2024. Following the initial submission, additional experiments were conducted
using new treebanks to enhance the experimental study. Upon acceptance, further iterations
focused on preparing the camera-ready version and presentation materials for the conference.

6. Thesis submission: This phase included two key deliverables: the proposal manuscript
for approval and the final thesis report. The goal of these iterations is to deliver a well-
documented presentation of the project’s findings.

1.3 Tools, materials and resources

To validate our graph linearizations and develop our neural parsers, we relied on Python 3.11 as the
main programming language with the following libraries:

• PyTorch 2.2, a widely used deep learning framework for building and deploying neural net-
works. PyTorch is especially known for its support of GPU acceleration, making it ideal for
training large models, and its seamless integration with CUDA/NVIDIA technologies, en-
abling fast computations. It provides a dynamic computational graph, which is useful for
research and experimentation, allowing for easy debugging and modification of models.

• HuggingFace Transformers 4.45, an open-source library with the official implementations and
pretrained weights of SoTA DL models, allowing simple fine-tuning for specific tasks. The li-
brary simplifies the use of powerful architectures and provides direct access to an extensive
repository of models and datasets, supporting model development and reducing the time re-
quired to train new models from scratch.

• SuPar 1.14, an open repository with SoTA approaches for dependency, constituency and se-
mantic parsing. The code was used to run experiments for graph-based baselines.

To train our parsers we relied on two annotated open-source datasets:

• The SemEval 2015 Task 18 dataset [16], which consists of five different treebanks with seman-
tic annotations in the SDP-format: [i] the English treebank annotated with DELPHIN MRS-
Derived Bi-Lexical Dependencies (DM) [27]; [ii-iii] the English and Chinese datasets with
Enju Predicate–Argument Structures (PAS) [28]; and [iv-v] the English and Czech datasets

5

https://www.python.org/downloads/release/python-3110/
https://pytorch.org/get-started/previous-versions/#v220
https://pytorch.org/
https://huggingface.co/docs/transformers/v4.45.2/en/index
https://github.com/yzhangcs/parser
http://sdp.delph-in.net/2015/data.html
http://sdp.delph-in.net/2015/data.html

with Prague Semantic Dependencies (PSD) [29]. Each treebank provides three splits: a train-
ing set, an in-distribution (ID) split, and an out-of-distribution (OOD) split, with the last two
reserved for evaluation. For the English and Czech treebanks, we used the recommended
split, taking the sentences from Section 20 for validation. For the Chinese treebank, since no
specific recommendation is provided, we used the sentences from Section 2 for validation.

• The IWPT 2021 Shared Task dataset [30], a multilingual benchmark that contains enhanced
universal dependencies in 17 different languages following the Enhanced CoNLL-format: Ara-
bic, Bulgarian, Czech, English, Estonian, Finnish, French, Italian, Latvian, Dutch, Polish, Slo-
vakian, Swedish, Tamil, and Ukrainian. Each treebank is already split in three subsets for
training, validation, and evaluation, which were maintained for our experiments.

6

https://universaldependencies.org/iwpt20//data.html
https://universaldependencies.org/u/overview/enhanced-syntax.html

Chapter 2

Background

This chapter introduces the foundational concepts in DL, NLP and Natural Language Under-
standing (NLU) to understand the proposed graph linearizations and the neural framework

developed in this project. With the advent of neural networks for processing unstructured data (e.g.
text [31, 32] or image [33, 34]), NLP has undergone a significant improvement by adapting neu-
ral networks for learning complex patterns and relationships from large-scale annotated datasets.
These architectures, designed to capture the sequential nature of language, aim to encode sentences
into dense vectorized representations – commonly referred to as embeddings. Numerous architec-
tures have been proposed, each differing in how they contextualize sequential information and learn
optimal parameters via error propagation [35, 36].

This chapter reviews the neural networks that have been most influential in NLP tasks, such
as recurrent networks and Transformer-based architectures (Section 2.1). It formally introduces the
graph parsing task and the approaches that have been designed for the problem (Section 2.2). Finally,
it presents the SL approach and its theoretical adaptation to graph parsing (Section 2.3).

2.1 Neural networks for NLP

The first neural network proposed for classification problems was the Feed Forward Network (FFN)
[37]. This architecture is conformed by a sequence of connected layers, where the output of the
previous layer is fed as input to the next one. Each layer is composed by multiple neurons, where
each neuron has a weight vector (w, b) that is optimized via gradient descent [38, 39]. Formally,
let li be the i-th layer of the FFN with di neurons, for i = 1, ...,m. Each layer li, after performing
some operations, always returns a hidden vector hi ∈ Rdi . Since each neuron in layer li has a
weight vector (w, b) ∈ Rdi−1+1, when stacking the weight vectors of the di neurons in a layer li, we
obtain a matrix (Wi, bi) ∈ Rdi×(di−1+1). The hidden vector hi is computed from the previous one
hi−1 ∈ Rdi−1 as hi = σ(Wihi−1 + bi), where σ : Rdi → Rdi is a non-linear activation function
that transforms the output vector.

The process of propagating the vectors h1, ..,hm through the network is called forward pass.
The FFN is fed with an input feature vector x ∈ Rd0 and is passed through each layer until the last
one (commonly known as output layer) returns its hidden vector hm = FFN(x), which serves as the

7

output of the full architecture, also denoted as ŷ = FFN(x) ∈ Rm.1

The defining property of the FFN is its ability to optimize its weights to approximate the output
ŷ ∈ Rm to a ground truth y ∈ Rdm . In classification tasks, since each input feature vector is associ-
ated with a class y ∈ C, where C is the set of possible classes. The ground truth is represented as the
one-hot encoding of y, meaning y ∈ [0, 1]|C|, while ŷ estimates the probability distribution of the
input over C. Given a loss function that quantifies the similarity between ŷ and y, the FFN iteratively
optimizes its weights through gradient descent to refine ŷ and approximate it to the ground truth.
The error propagates from the last layer to the first in a process known as backward pass. By train-
ing on multiple feature vectors (x1, ..,xn) paired with ground truths (y1, ...,yn), the FFN learns to
model complex nonlinear relationships in the input space to produce accurate predictions.

FFNs have demonstrated remarkable effectiveness in both classification and regression tasks.
Their primary advantage against traditional Machine Learning (ML) models lies in their ability to
automatically learn features directly from annotated data, eliminating the need for manual feature
engineering, a key limitation of traditional ML methods such as Support Vector Machines or Deci-
sion Trees. In classification tasks, the FFN adjusts its output layer tomatch the number of classes and
minimizes the cross-entropy loss during training to approximate the true probability distribution of
the target classes. For regression tasks, FFNs map input features to continuous values, optimizing
loss functions such as mean squared error (MSE). Unlike traditional approaches, FFNs can learn
both linear and nonlinear patterns without requiring explicit assumptions about the nature of the
relationships in the data.

2.1.1 Word embeddings

Early attempts to adapt neural networks to NLP [40] faced significant challenges in handling discrete
tokens, such as words, as input [41]. Neural networks rely on optimization processes that require
continuous feature representations, but approaches like one-hot encoding – where each word in
the vocabulary is represented as a sparse binary vector – proved inadequate. This method not only
struggled with optimization in high-dimensional spaces but also suffered from severe scalability
issues as the vocabulary size grew.

To address the limitations of one-hot encoding and capture semantic relationships in a latent
space, [42, 43] introduced the concept of learnable word embeddings. This method maps each in-
put token to a continuous dense vector – commonly referred to as embedding – with its parameters
optimized through backpropagation. The training process is designed to ensure that the embed-
ding space reflects semantic relationships between tokens, resulting in dense vectors that encode
meaningful semantic properties by the end of training.

Currently, static [44, 45] and contextualized [31, 46] embeddings are the most common technique
used to feed discrete tokens into a neural network. Word2vec [44] introduced a simple method for
generating static embeddings using a neural architecture optimized for two different tasks: (i) the
bag of words model, which predicts a masked word given its surrounding context; and (ii) the skip-
gram model, which predicts the context words given a target work. The trained embeddings have

1 The hat accentuation (̂) is commonly used to denote predictions of a model. For instance, ŷ denotes the prediction
of a model that is optimized to learn a ground truth y, where both y and ŷ are vectors.

8

proven effective in capturing word similarity and analogies, forming the basis for many advances
in NLP. However, they lack the ability to adapt to word meaning changes based on context, which
later motivated the development of contextualized embeddings.

Unlike static embeddings, which assign a single fixed vector to each word, contextualized em-
beddings dynamically generate representations that reflect the surrounding words in a sentence, en-
abling the model to capture nuanced meanings and resolve ambiguities through the context. These
embeddings becamewidely adoptedwith the release of Large LanguageModels (LLMs) [31, 47], neu-
ral architectures that process entire sequences as input and dynamically integrate information from
other tokens in the sequence into each token’s embedding, thus producing dense vectors enriched
with contextualized sequence properties. When trained on tasks like masked token prediction, these
models are guided to use the surrounding context to refine their trainable embeddings. Once the
training is complete, the output from the final layer serve as contextualized word representations
that encode rich semantic and syntactic information. Contextualized embeddings have shown to be
vastly superior to static ones in language understanding tasks and now form the backbone of SoTA
NLP solutions.

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were proposed to overcome a key limitation of FFNs when han-
dling the sequential nature of tasks such as time series analysis and NLP. Since FFNs are inherently
non-sequential and cannot model temporal dependencies between inputs, RNNs were specifically
designed to handle sequences by maintaining a memory (in the form of hidden states) over time,
thus capturing dependencies between different elements of an input sequence.

Vanilla RNN The first recurrent cell proposed was the vanilla RNN [48]. For an input feature
sequence, X = (x1, ..,xn) ∈ Rn×dx , the vanilla RNN uses a hidden state hi ∈ Rdh that is dynami-
cally updated storing the information of previous inputs of a current element xi. At each timestep
i, the hidden state is updated based on its previous value (hi−1) and the current input (xi) via a
non-linear operation with trainable matrices Wh ∈ Rdh×dh , Wx ∈ Rdx×dh and bh ∈ Rdh . Then, an
output yi ∈ Rdy is computed based on the current hidden state hi using two additional trainable
matrices Wy ∈ Rdh×dy and by ∈ Rdy (Equation 2.1). Note that, by updating the hidden state with
the current input, the network is able to learn which features needs to maintain from the previous
context (x1, ...,xi−1) to return a response yi optimizable via backpropagation (Figure 2.1).

hi = σ(hi−1Wh + xtWx + bh)

yi = σ(hiWy + by)
(2.1)

Long-Short TermMemory (LSTM) While vanilla RNNs can model dependencies in an input se-
quence, they struggle to capture long-range dependencies (due to the limited capacity of a single hid-
den state) and suffer from the problem of the vanishing gradient [49]. The LSTM [50] addresses this

9

RNN = RNN RNN RNNRNN

Decoder Encoder
Decoder

Encoder

Figure 2.1: Visualization of the forward pass in the vanilla RNN.

limitation by introducing two hidden vectors: the memory cell ci and the hidden state hi. These vec-
tors are updated through more sophisticated non-linear operations, enabling the network to retain
information from distant timesteps more effectively. The Bidirectional LSTM (BiLSTM) [51] further
enhances the capabilities of the LSTM by enabling bidirectional processing. In a BiLSTM, the input
sequence is fed into a standard LSTM in its original order and simultaneously reversed and passed
through a second LSTM. This allows the second LSTM to learn dependencies from right-to-left. The
hidden states and outputs from both LSTMs are concatenated, yielding a final representation that
captures bidirectional dependencies.

The LSTM has proven highly effective in NLU tasks [52, 53]. ELMo [47], one of the first LLMs,
leveraged stacked BiLSTM layers as its backbone to produce contextualized word embeddings that
dynamically capture word meanings based on context. Pretrained on large text corpora, ELMo
showcased remarkable performance across various NLP tasks.

2.1.3 Transformer block

The Transformer [36] redefined sequence modeling with an efficient, parallelizable, and scalable
architecture centered on the self-attention mechanism, making it the backbone of most SoTA NLP
architectures. The Transformer block is conformed by multiple layers, including multi-head self-
attention and FFNs, which collectively map an input sequence X = (x1, ..,xn) ∈ Rn×dx to an
output sequence of the same length Y = (y1, ...,yn) ∈ Rn×dy through a series of non-linear trans-
formations and attention computations.

The self-attention is the core innovation of the Transformer block, allowing each output yi to
incorporate information from all elements of the input sequence by making the transformation
of each element context-dependent. Specifically, the self-attention module first projects the input
sequence X ∈ Rn×dx into three different representations: (i) the query Q = XWq ∈ Rn×dk , (ii)
the key K = XWk ∈ Rn×dk ; and (iii) the value V = XWv ∈ Rn×dv ; where Wq ∈ Rdx×dk ,
Wk ∈ Rdx×dk ,Wv ∈ Rdx×dv are trainable matrices. The self-attention computes the matrix product
between these three matrices to dynamically extract contextualized features of each input in the
sequence (Equation 2.2).

Attention(Q,K,V) = softmax
(QK>
√
dk

)
︸ ︷︷ ︸

score matrix (S)

V ∈ Rn×dv (2.2)

The Transformer parallelizes multiple attention heads within a single block, followed by FFNs

10

with non-linear activations, residual connections and normalization layers to ensure stable opti-
mization. The final output is a new sequence Y = (y1, ...,yn) ∈ Rn×dv where each element is a
contextualized non-linear projection of its corresponding input.

2.1.4 Large Language Models

The success of the Transformer block for NLP tasks sparked extensive research focused on LLMs.
By stacking multiple Transformers within a single architecture and training this model on vast
amounts of textual data, researchers developed powerful models – dubbed as Large Language Mod-
els – capable of excelling specific NLP tasks. With a pretraining stage designed to capture semantic
and contextual information from text, LLMs learn accurate language representations that could be
fine-tuned for specific applications.

LLMs transformed NLP by setting new benchmarks across a wide range of tasks, including ques-
tion answering, text classification and machine translation. This progress has been driven by three
distinct paradigms in pretraining objectives, which define the architecture and applications of these
models: encoder-only models, such as BERT [31], RoBERTa [46] and XLNet [54], usually pre-
trained on discriminative tasks such as Masked Language Modeling , decoder-only models, such
as GPT [32, 55, 56], LLaMA [57, 58, 59] and Mistral [60, 61], pretrained on next token prediction; and
encoder-decoder models, such as BART [62] and T5 [63], pretrained on text-to-text generation.

Figure 2.2 shows a visualization each paradigm. Encoder-only architectures (Figure 2.2a) process
input sequences using Transformer layers to produce contextualized outputs of the same length.
Decoder-only architectures (Figure 2.2b) focus on generating the next token yi+1 from an input
context (x1, ...,xi). To efficiently parallelize this paradigm for all tokens in the input sequence, the
self-attention operation is modified by setting the upper diagonal of the score matrix (Equation 2.2)
to zero, thus ensuring each token xi is contextualized only with past elements (this is commonly
known as masked attention). Encoder-decoder architectures (Figure 2.2c) combine the strengths
of both approaches: the encoder first contextualizes the entire input sequence, and the decoder
generates the output tokens step-by-step by recurrently feeding its previously generated tokens
back into the model.

(a) Encoder-only.

RNN = RNN RNN RNNRNN

Decoder Encoder
Decoder

Encoder

(b) Decoder-only.

RNN = RNN RNN RNNRNN

Decoder Encoder
Decoder

Encoder

(c) Encoder-decoder.

RNN = RNN RNN RNNRNN

Decoder Encoder
Decoder

Encoder

Figure 2.2: Different paradigms for LLMs.

For thiswork, we focus on encoder-only architectures, which aremore commonly used for NLU
tasks than the other two paradigms, primarily due to the bidirectional nature of their pretraining
objectives. Previous studies [64, 65] have explored the integration of generative models into NLU

11

tasks through an extensive experimental study, demonstrating that masked attention significantly
limits the ability of neural networks in natural language reasoning.

BERT BERT [31] is a widely used Transformer-based, encoder-only language model for English.
Pretrained on the English Wikipedia [66] and BookCorpus [67] datasets, it optimizes two training
objectives: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, ran-
dom tokens of the input sequence are replaced by a special token [MASK], and BERT is tasked
to predict the original tokens. For NSP, two sentences are concatenated interleaved by a special
token [SEP] to form a single input sequence, and BERT predicts whether the two sentences are
consecutive.

To adapt the structure of the input to performMLM and NSP, BERT adds a special token [CLS]
at the beginning of an input sequence. Thus, for an input sequence ([CLS], w1, .., wn) with some
masked tokens, BERT returns a sequence of contextualized embeddings (h0,h1, ...,hn). Those em-
beddings associated with the [MASK] token are used to predict the original token. The first one
h0, which corresponds to the [CLS] token, is used to predict whether the input corresponds to
two consecutive sentences.

Fine-tuned on the GLUE benchmark [68], BERT achieved SoTA performance in NLU tasks, such
as question answering and sentiment analysis. Since then, it has been widely adopted as encoder
for more complex NLP tasks [69, 70, 71], often paired with customized decoders to specific output
structures.

RoBERTa RoBERTa [46] was introduced as an improved version of BERT, leveraging the same
Transformer-based architecture while addressing limitations in BERT’s pretraining process. Specif-
ically, RoBERTa removed the NSP task, increased the training batch size and extended the number
of training epochs. These modifications enabled RoBERTa to achieve superior performance on the
GLUE benchmark, establishing it as a more effective encoder for NLU tasks.

Building on RoBERTa’s success, XLM-RoBERTa [72] was introduced as its multilingual ex-
tension. It shares the same architecture and pretraining objectives as RoBERTa but was trained
on CommonCrawl data [73] spanning over 100 languages. This multilingual capability has made
XLM-RoBERTa a valuable tool for cross-lingual NLU tasks.

XLNet XLNet [54] is a Transformer-based model that addresses the limitations of BERT and
RoBERTa by replacing MLM by Permutation Language Modeling (PLM) as pretraining objective
and integrating the Transformer-XL [74] as backbone. The key idea of PLM is generating all pos-
sible permutations of a sentence to train the model on next token prediction. When producing all
possible permutations, XLNet captures the bidirectional context without masking tokens during
consecutive epochs. As a result, XLNet avoids the independence assumptions of MLM and better
leverages the full context of a sequence. These enhancements enable XLNet to outperform BERT
and RoBERTa on several NLU benchmarks.

12

2.2 Graph Parsing

In graph parsing, an input sentence is represented as a directed labeled graphG = (W,A), where the
set of nodes is an ordered sequence W = (w1, ..., wn) ∈ Vn representing the words of a sentence2,
and the set of arcs A fulfills the following conditions:

1. Each arc is denoted as (h r→ d), where d ∈ [1, n] and h ∈ [0, n], and represents a dependency
from an outgoing node wh (the parent or head) to an incoming node wd (the dependent) with
a relationship type r ∈ R. In Figure 1.1, there is an arc (3 ARG1−→ 2) that connects the word “is”
to the word “Vinken” with the semantic relation “ARG1”.

2. Cycles of length one are not permitted, and each pair of entry points of W has at most one
associated arc in A. Formally, for every arc of the form (h

r→ d), it holds h 6= d, and if
∃(h r→ d) ∈ A, then @(h r′→ d) ∈ A where r 6= r′.

3. Those nodes with an incoming arc from the artificial node w0 are known as root nodes. In
Figure 1.1, the only root of the sentence is the word “is”, and its dependency on the node w0 is
displayed without an incoming arc (0 TOP−→ 3). The number of roots in a graph is not restricted,
so some graphs might have multiple nodes or none at all.

Graph parsing has been adopted in multiple tasks that involve extracting dependency relations
in a sentence. In semantic parsing [16] the arcs represent semantic dependency relations between
words of a sentence (Figure 1.1). In enhanced dependency parsing [30] the arcs collect syntactic
dependencies between words in a more free-manner than dependency parsing [75]. In sentiment

parsing [15] the full graph structure is used to represent the relationships, polarity and sentiment
expressions of an input sentence. In emotion-cause analysis [13] the arcs are associated with emo-
tion causal relations between different utterances of multiple sentences. All these tasks adapt graph
parsing to process and input sequence and extract the paired dependencies between its different
elements. Thus, in general terms, the goal of a graph parser is to accurately extract the set of depen-
dency relations for a given input sequence.

Similar to other NLP tasks, SoTA graph parsing typically follows the encoder-decoder frame-
work [17, 18, 20]. In this framework, the encoder – often a fine-tuned LLM or a custom recurrent
or Transformer-based model – learns contextualized representations, while the decoder predicts a
structured output from which a predicted set of arcs is recovered. Depending on the design of this
structured output, research on this task has primarily followed two main approaches: graph-based
approaches and transition-based systems.

2.2.1 Graph-based approaches

Graph-based approaches are characterized by a scoring system that assigns probability scores to all
possible arcs in a sentence. Intuitively, these methods predict a score matrix corresponding to the
dimensions of the input sentence and apply a threshold to determine which scores represent actual
predicted arcs.

2 We use the symbol V to denote the set of possible words andR to denote the set of arc labels.

13

RNN = RNN RNN RNNRNN

Decoder Encoder
Decoder

Encoder

BiLSTM
Arcs Relations

Biaffine Attention

Figure 2.3: Visualization of the biaffine system [17] for an input sentence of n = 4 tokens.

Biaffine [17] is one of the most popular graph-based approaches proposed for semantic parsing
due to its simplicity and efficient implementation. Figure 2.3 shows the main components of the bi-
affine parser. For an input sentence (w1, ..., wn) ∈ Vn, a bidirectional encoder3 returns a sequence
of contextualized embeddings, H = (h1, ..,hn) ∈ Rn×dh . Each embedding hi is individually fed
into four different FFNs to obtain four different representations of the same word wi: the represen-
tation of the word as an arc dependent, as an arc head, as a relation dependent and as a relation
head (Equations 2.3-2.6, respectively).

h(arc-dep)
i = FFNdep

arc (hi) ∈ Rd(arc-dep) (2.3)

h(arc-head)
i = FFNhead

arc (hi) ∈ Rd(arc-head) (2.4)

h(rel-dep)
i = FFNdep

rel (hi) ∈ Rd(rel-dep) (2.5)

h(rel-head)
i = FFNhead

rel ∈ Rd(rel-head) (2.6)

Figure 2.3 shows that the biaffine decoder contains two biaffine attention modules, where arcs
and relation scores are computed. The first module computes the arc score matrix Sarc ∈ Rn×n,
where each score sarcd,h at position (d, h) is obtained from the cross information of the arc representa-
tion of the dependent h(arc-dep)

d and the head h(arc-head)
h and assesses the probability of an arc (h→ d).

The secondmodule returns instead the relation score tensor Srel ∈ Rn×n×|R|, where each score sreld,h,r

represents the probability of a relation r in the arc from wh to wd. The first module uses a learnable
matrix, denoted as Uarc ∈ Rd(arc-dep)×d(arc-head) , and the second module uses three learnable tensors,
denoted as Urel ∈ Rd(rel-dep)×|R|×d(rel-head) , Wrel ∈ R(d(arc-dep)+d(arc-head))×|R| and b ∈ R|R|. By stacking
each word representation,H∗ ∈ Rm×d∗ , where ∗ ∈ {(arc-dep), (arc-head), (rel-dep), (rel-head)}, the
computation of both tensors can be efficiently performed through a parallelizable tensor product
defined in Equation 2.7. Note that the biaffine decoder is just computing each score as the dot prod-
uct of each representation linearly projected to a learnable space, which actually resembles to the
self-attention mechanism (Equation 2.2).

3 Originally, [17] used a BiLSTM-based encoder, although other studies have reported results using more powerful
architectures, such as a fine-tuned LLM [24, 76].

14

Sarc = H(arc-dep)UarcH(arc-head)

Srel = H(rel-dep)UrelH(rel-head) +
[
H(rel-dep),H(rel-head)]W+ b

(2.7)

The biaffine parser was evaluated on the English treebanks of the SemEval 2015 Task 18 dataset
[16] and remains as one of the best-performing approaches in semantic parsing. Subsequent works
have enhanced its performance by making targeted modifications to either the decoder or the en-
coder. For example, [18] introduces second-order decoding to better capture arc distributions from
the score matrix, while [77] replaces the static embedding layer with dynamic embeddings. De-
spite these noticeable improvements, the biaffine parser continues to serve as a robust baseline for
graph-based approaches.

2.2.2 Transition-based systems

Transition-based systems incrementally construct the graph structure by applying a sequence of
predefined transitions (or actions) to update the system’s current state st. Starting from an initial
state s0, at each timestep t, for t = 1, ..., T , the transition system performs an action τt (such as
adding arcs or skipping nodes) that updates st−1 to st until a final state sT is reached.

SoTA transition systems are usually guided by a neural model. Each state of the system is en-
coded through neural representations to predict the most likely next action based on the current
state and context. To train the models, an oracle is used to provide the optimal sequence of transi-
tions needed to construct the correct graph.

Covington [78] is one of the fundamental transition-based algorithms to parse graph structures.
It relies two pointers i and j, constrained to i < j, that process the input sentence (w1, ..., wn) from
left to right, creating arcs that connect the words wi and wj . Formally, each state st = (i, j, Â) at
timestep t is defined by the two pointers and the set of recovered arcs Â. In the initial state, the
pointers are fixed at the start of the sequence and the set of recovered arcs is empty, s0 = (0, 1, ∅).
At each timestep t, the system performs one of these four actions:

1. Left-arc(r): Creates an arc (j r→ i), adds it to Â and decreases i by one if i > 0.

2. Right-arc(r): Creates and arc (i r→ j), adds it to Â and decreases i by one if i > 0.

3. No-arc: Decreases i by one.

4. Shift : Increases j by one and sets i to j − 1.

The final state sT = (i, n+1, Â) is reached when the pointer j surpasses the length of the sentence,
and Covington returns Â as the set of predicted arcs. Table 2.1 shows the sequence of transitions
and states performed by Covington to recover all arcs of the graph in Figure 1.1. Note that some
shift actions are executed when there are no more arcs between wj and previous tokens to wi, thus
reducing the number of transitions required to parse the full graph.

15

Transition New arc Updated state
s0 (w0)

•
Mr.
•

Vinken is chairman of Elsevier N.V. , the Dutch publishing group

s1 shift (w0) Mr.
•

Vinken
•

is chairman of Elsevier N.V. , the Dutch publishing group

s2 right-arc(comp) (1
comp−→ 2) (w0)

•
Mr Vinken

•
is chairman of Elsevier N.V. , the Dutch publishing group

s3 shift (w0) Mr Vinken
•

is
•
chairman of Elsevier N.V. , the Dutch publishing group

s4 left-arc(ARG1) (3
ARG1−→ 2) (w0) Mr

•
Vinken is

•
chairman of Elsevier N.V. , the Dutch publishing group

s5 no-arc (w0)
•

Mr Vinken is
•
chairman of Elsevier N.V. , the Dutch publishing group

s6 right-arc(TOP) (0
TOP−→ 3) (w0)

•
Mr Vinken is

•
chairman of Elsevier N.V. , the Dutch publishing group

s7 shift (w0) Mr Vinken is
•
chairman

•
of Elsevier N.V. , the Dutch publishing group

s8 right-arc(ARG2) (3
ARG2−→ 4) (w0) Mr Vinken

•
is chairman

•
of Elsevier N.V. , the Dutch publishing group

s9 shift (w0) Mr Vinken is chairman
•

of
•
Elsevier N.V. , the Dutch publishing group

s10 left-arc(ARG1) (5
ARG1−→ 4) (w0) Mr Vinken is

•
chairman of

•
Elsevier N.V. , the Dutch publishing group

s11 shift (w0) Mr Vinken is chairman of
•
Elsevier
•

N.V. , the Dutch publishing group

s12 right-arc(ARG2) (5
ARG2−→ 6) (w0) Mr Vinken is chairman

•
of Elsevier

•
N.V. , the Dutch publishing group

s13 shift (w0) Mr Vinken is chairman of Elsevier
•

N.V.
•

, the Dutch publishing group

s14 left-arc(comp) (7
comp−→ 6) (w0) Mr Vinken is chairman of

•
Elsevier N.V.

•
, the Dutch publishing group

s15 shift (w0) Mr Vinken is chairman of Elsevier N.V.
•

,
•
the Dutch publishing group

s16 shift (w0) Mr Vinken is chairman of Elsevier N.V. ,
•
the
•

Dutch publishing group

s17 shift (w0) Mr Vinken is chairman of Elsevier N.V. , the
•

Dutch
•

publishing group

s18 shift (w0) Mr Vinken is chairman of Elsevier N.V. , the Dutch
•

publishing
•

group

s19 shift (w0) Mr Vinken is chairman of Elsevier N.V. , the Dutch publishing
•

group
•

s20 right-arc(comp) (11
comp−→ 12) (w0) Mr Vinken is chairman of Elsevier N.V. , the Dutch

•
publishing group

•

s21 right-arc(ARG1) (10
ARG1−→ 12) (w0) Mr Vinken is chairman of Elsevier N.V. , the

•
Dutch publishing group

•

s22 right-arc(BV) (9
BV−→ 12) (w0) Mr Vinken is chairman of Elsevier N.V. ,

•
the Dutch publishing group

•

s23 no-arc (w0) Mr Vinken is chairman of Elsevier N.V.
•

, the Dutch publishing group
•

s24 left-arc(appos) (12
appos−→ 6) (w0) Mr Vinken is chairman of

•
Elsevier N.V. , the Dutch publishing group

•

s25 shift (w0) Mr Vinken is chairman of Elsevier N.V. , the Dutch publishing group
• •

Table 2.1: Covington decoding [78] for the semantic graph of Figure 1.1. The pointer i is marked
with a blue bullet (•) and the pointer j is marked with the red bullet (•).

16

2.3 Sequence-labeling for Graph Parsing

The idea behind the SL paradigm is to represent complex structures (like graphs) as a sequence of
labels of the same length as the input sentence. Prior work has applied SL approaches (also named
linearizations) to dependency and constituency tree parsing, which are intrinsically related to graph
parsing, as trees constitute a special case of graphs. For instance, [23] proposed a naive encoding
for dependency trees. Dependency trees are graphs where each node is limited to only have one
head, so a naive approach is to use the positions of the heads as the sequence of labels. Figure 2.4
shows an example of this encoding: note that each node wi has only one head (i.e. one incoming
arc), so the set of arcs can be represented with a sequence of labels where each label is simply the
position of the head of wi.

He makes some good observations on a few of the pic’s .
1 2 3 4 5 6 7 8 9 10 11 12

N: 2 0 5 5 2 8 8 5 11 11 8 2

nsubj

det

amod

obj

case

det

nmod

case

det

nmod

punctroot

Figure 2.4: Dependency tree extracted from the English EWT dataset [79]. The second row displays
the word positions. The third row (N) shows the naive encoding proposed by [23].

By representing a complex structure like a tree as a sequence of labels (where each label is as-
sociated to only one token of the sentence), the design of the neural architecture to predict these
structures is simplified to a tagging task, where the model just needs to perform classification at
token level over the set of possible labels. In tagging tasks, the neural architecture commonly fol-
lows the encoder-decoder architecture. The encoder is fed with the input sentence (w1, ..., wn) and
produces contextualized embeddings (h1, ..,hn). The decoder is a one-layered FFN with a softmax
activation function that maps each contextualized token embedding to the probability distribution
over the set of labels. Note that this approach considerably simplifies the decoder module, avoiding
complex neural representations such as biaffine to recreate the original graph structure.

Once the sequence of labels is predicted, the reverse process needs to be executed to recover
the original form of the input structure (in graph parsing, a set of arcs is recovered). In the naive
encoding for dependency trees (Figure 2.4), all arcs are recovered by creating a connection between
each node and the value of its label.

The forward transformation of the input structure to the sequence of labels is known as encod-
ing, while the reverse transformation to recover the original structure from the sequence of labels
is known as decoding. Note that, when the sequence of labels is correctly predicted by a neural
model, the decoding process correctly recovers the real graph. Otherwise, if some label is incor-
rectly predicted, the errors might be propagated to the decoding process, producing incorrect arcs
when rebuilding the graph. Figure 2.5 shows an abstract diagram of the SL approach.

Several SL approaches have been proposed for a wide range of NLP tasks, such as entity link-

17

Encoding
process

Encoder

Decoder

Loss Decoding process

Predicted arcs

Input graph

Gold labels

Predicted labels

Figure 2.5: Visualization of a SL system for graph parsing. An encoder-decoder architecture learns
to contextualize the input sentence and predict a label per input token. The network is trained
as a standard classification task using the gold labels obtained through the encoding process. The
decoding process recovers a set of arcs from the predicted labels. See that some arcs might be
incorrect (colored in red) or missed in the predicted graph due to potential errors produced by the
network.

ing [80], event extraction [81], aspect-based sentiment analysis [82] and dependency [24] and con-
stituency [21, 22] parsing. However, its application in graph parsing remains unexplored. This work
proposes graph linearizations inspired from previous dependency tree encodings (such as the one
displayed in Figure 2.4), effectively extending their expressiveness to minimally constrained graphs.

2.3.1 Motivation

Graph-based based approaches like biaffine (Section 2.2.1) and transition-based systems like Cov-
ington (Section 2.2.2) have demonstrated competitive performance in graph parsing across several
benchmarks [14, 16]. However, both methods present specific challenges that motivate this work
on reframing graph parsing as sequence labeling.

Since graph-based approaches compute the score of all possible arcs in an input graph, they
typically suffer from quadratic complexity with respect to the input length, which can make them
computationally expensive for longer sentences. For instance, as demonstrated in the previous sec-
tion, the biaffine parser [17] operates with a complexity ofO(n2). However its second-order variant
[18] increases the complexity to O(n3), significantly damaging the system’s efficiency as the input
sequence length grows.

On the other hand, transition-based approaches exhibit variable complexity, as their runtime
depends on the number of states generated during parsing, which is strongly influenced by the
decisions made by the trained model and the algorithm itself. Covington [78] has also a quadratic
complexityO(n2) in the worst case (parsing all possible head-dependent pairs) and it is still limited
to O(|A|) in the best case. Alternatives, such as the transition-based system with pointer networks
proposed by [20], although reaching paired performance with graph-based approaches, still face
O(n2) complexity in the average case (for sparse graphs) and O(n3) in the worst case.

The SL paradigm enables the compression of the graph information into a sequence of labels
aligned with the input length, thereby reducing the theoretical complexity4 of graph parsing to

4 We refer to theoretical complexity since the SoTA graph parsers do not scale linearly in practice due to the

18

linear, which represents a substantial improvement over traditional methods. Additionally, as it is
displayed in Figure 2.5, reformulating graph parsing as a tagging task provides greater flexibility
for designing and training alternative neural architectures, as tagging requires a simpler and more
straightforward output structure compared to traditional graph-based or transition-based methods
[83, 84].

This work proposes graph linearizations inspired by previous dependency tree encodings [23,
25], effectively extending their expressiveness to minimally constrained graphs, and demonstrating
that sequence labeling can combine high efficiency with performance closely matching the state of
the art.

2.3.2 Formalization

We now introduce a formal definition for graph linearizations and the notation that will be followed
throughout the next chapters to describe our proposed SL approaches. Let W = (w1.., wn) ∈ Vn

be an input sentence andG = (W,A) its potential graph. LetAn be the set of all possible set of arcs
(constrained to the properties described in Section 2.2) for n-sized graphs and L the set of possible
labels of the SL algorithm.

• The encoding process is an injective function ε : An → Ln that maps any set of arcs A into
a sequence of n labels, denoted as ` = (`1, ..., `n) ∈ Ln.

• The decoding process is instead a surjective function δ : Ln → An that recovers a valid set of
arcs from a sequence of labels `.

As shown in Section 2.3, a well-formed graph linearization defines ε and δ to satisfy that a
set of arcs A can be recovered from its encoded representation, formally A = δ(ε(A)), optionally
under some additional assumptions over A.5 For simplicity, from now on we are going to ignore
the relationship type r in the arcs defined in Section 2.2, so each arc is now an unlabeled directed
arc of the form (h→ d), where h ∈ [0, n], d ∈ [1, n] and h 6= d. This component r will be revisited
in Chapter 5.

Depending on how the set of labels L is defined we say that the linearization is bounded or
unbounded. When the cardinality of L is not restricted, we say that the encoding is unbounded.
For example, the dependency encoding displayed on Figure 2.4 is unbounded since the set of labels
potentially grows with the length of the sentence, since it uses the absolute positions of the head
tokens. Otherwise, when L is fixed independently of An, we say that the encoding is bounded. In
this work we propose several graph linearizations that are grouped in unbounded (Chapter 3) and
bounded algorithms (Chapter 4).

Transformer-based backbone, which always adds a quadratic complexity.
5 For instance, the linearization displayed in Figure 2.4 is also valid for graphs, but it assumes that A is constrained to

only have one incoming arc per node.

19

Chapter 3

Unbounded linearizations

In this chapter we define our proposed unbounded linearizations with their corresponding en-
coding and decoding transformation. The encoding process (ε) maps the set of arcs A into a

sequence of labels ` = (`1, ..., `n) ∈ Ln, where L is not bounded. The decoding process (δ) per-
forms the reverse transformation and recovers A from `. We grouped the unbounded linearizations
in positional and bracketing encodings.

Section 3.1 introduces the positional linearization, which is the simplest approach for repre-
senting the arc information as a sequence of labels, formalizing the encoding, decoding and postpro-
cessing steps. The postprocessing is an additional step included in the decoding process to ensure
that the set of recovered arcs is valid (for example, to ensure that it does not produce cycles of length
one), and it is usually needed for predicted labels with potential errors that initially might produce
non-valid arcs.

Section 3.2 focuses on the bracketing linearization and its hyperparameter k. This lineariza-
tion makes some assumptions over A to satisfy a consistent recovery, i.e. A = δ(ε(A)) if and only
if A fulfills some conditions. Section 3.2 discusses the coverage of the bracketing encoding, this is,
the ratio of graphs that this algorithm is able to fully recover by modulating its hyperparameter k.

3.1 Positional encodings

We extend the positional encodings proposed for dependency trees (Figure 2.4) to support encoding
multiple heads per node. In Figure 2.4 we showed that, since dependency trees only have one head
per node, each label encodes the position of its unique head. In graphs, since each node might have
multiple heads (or none at all), the label is instead composed by the sequence of positions of each
head.

Encoding Equation 3.1 shows the simplest variant of the positional encoding, referred to as ab-
solute indexing1. Note that the sort function arranges a numerical set in ascending order, and it is
needed to avoid creating labels that are essentially the same (e.g. in Figure 3.1, `A4 = (3, 5)means the
same that `A4 = (5, 3) so it should always be encoded in one way to avoid increasing the cardinality

1 The term absolute comes from the use of the absolute positions of the heads.

20

of L). Equation 3.2 shows the relative encoding, which uses relative positions, thus reducing the
encoding’s reliance on the global positional information of W .

`Ai = sort
{
h | (h→ i) ∈ A

}
(3.1)

`Ri = sort
{
h− i | (h→ i) ∈ A

}
(3.2)

Figure 3.1 (rows A and R) shows the absolute and relative labels derived from the semantic
graph of Figure 1.1. The absolute label of a node wi is the ordered sequence of the positions of its
head: for example, the node w4 has two heads, w3 and w5, so its absolute label is `A4 = (3, 5).
The relative label instead subtracts to these positions the dependent position i, so `R4 = (3 −
4, 5 − 4) = (−1, 1). Note that in this example the absolute encoding generates five different
labels, LA = {(1, 3), (0), (3, 5), (5, 7, 12), (9, 10, 11)}, while the relative encoding produces four,
LR = {(−1, 1), (−3), (−1, 1, 6), (−1,−2,−3)}. In real datasets, sparse graphs often exhibit recur-
ring patterns in the association of heads to dependents. These patterns favor relative encoding, as
dependents are consistently encoded with the same label regardless of their absolute position.

Mr. Vinken is chairman of Elsevier N.V. , the Dutch publishing group
1 2 3 4 5 6 7 8 9 10 11 12

A: - (1,3) (0) (3,5) - (5,7,12) - - - - - (9,10,11)

R: - (-1,1) (-3) (-1,1) - (-1,1,6) - - - - - (-1,-2,-3)

B: / >< \>/ >< \/ ><< \ / / / \>>>

comp ARG1 ARG2 ARG1 ARG2 comp

appos

BV

ARG1

comp

TOP

Figure 3.1: Example of unbounded encodings: absolute (A), relative (R) and bracketing (B).The dash
(-) is used to represent an empty sequence. Note that the closing bracket > in `3 does not match
with any opening bracket / since it belongs to the root node.

Decoding The decoding process of both the absolute and relative encoding is straightforward.
Each label is independently processed and recovers a subset of arcs connected to the node i: in the
case of the absolute indexing, each element of `Ai is decoded as a head of wi while in the relative
indexing the position i needs to be added to the encoded position (Equations 3.3 and 3.4). For
instance, in Figure 3.1, the absolute label of w2 is `A2 = (1, 3), thus, following Equation 3.3, the
recovered arcs are {(1 → 2), (3 → 2)}. Instead, the relative label of w4 is `R4 = (−1, 1), thus, the

21

recovered arcs are {(3→ 4), (5→ 4)} (Equation 3.4).

δabs(`) =
n⋃

i=1

{
(p→ i) : ∀p ∈ (`i ∩ [0, n])

}
(3.3)

δrel(`) =

n⋃
i=1

{
((p+ i)→ i) : ∀p ∈ (`i ∩ [−i, n− i])

}
(3.4)

Postprocessing When training a neural model to learn the sequence of labels from input words,
it might produce corrupted positions that create arcs with heads out of the range of [0, n]. Those
situations are usually solved through heuristics [22, 23] that skip some information in the predicted
labels. For positional encodings, the simplest heuristic is to ignore those positions that recover heads
that are not in the range [0, n].

3.2 Bracketing encoding

In the bracketing encoding, each label (`Bi) can be visualized as a graphical representation of the
incoming and outgoing arcs that are connected to each node wi. See again Figure 3.1 (row B). The
node w12 has four connections: three incoming arcs from the left, which results in three arcs of
the form (∗ → 12) that are translated into three right arrows >, and one outgoing arc to the left
(∗ ← 12), which is represented with the left slash \. The result is that the the node w12 is encoded
as `12 = \>>>.

Encoding Formally, in the bracketing encoding, each label `Bi is a string that adheres to the regular
expression *>*<*/*, where the presence of each symbol in the bracket set, B = {\,>,<,/},
indicates different types of connections to the node wi:

• The symbol \ indicates the presence of an outgoing arc from wi to the left.

• The symbol > indicates the presence of an incoming arc to wi from the left.

• The symbol < indicates the presence of an incoming arc to wi from the right.

• The symbol / indicates the presence of an outgoing arc from wi to the right.

Figure 3.1 (row B) shows the bracketing encoding for the semantic graph in Figure 1.1. The label
of w6 is `B6 = ><<, indicating that there is an incoming arc from the left, specifically (5

ARG2−→ 6),
and two incoming arcs from the right, which are (12

appos−→ 6) and (7
comp−→ 6). The label `B12 = \>>>

contains three repetitions of the symbol >, indicating that the node w12 has three heads from its
left, which corresponds to {(9 BV−→ 12), (10

ARG1−→ 12), (11
comp−→ 12)}; and one dependent to its left:

(12
appos→ 6).

Decoding In the bracketing encoding, an arc with the form (h → d) is encoded with only two
symbols that are located in `Bh and `Bd . If the arc is a left arc2 the symbol located in `Bh is \ and the

2 Left arcs are those where the dependent is at the left of the head, while right arcs have its dependent at the right of
the head.

22

symbol located in `Bd is <. If the arc is a right arc, the symbol located in `Bh is / and in `Bd is >. For
example, the left arc (3 ARG1→ 2) in Figure 3.1 is represented in `B2 = >< and `B3 = \>/. The right arc
(1

comp→ 2) is represented with `B1 = / and `B2 = ><. Thus, it is straightforward to see that left arcs
are associated to < and \ symbols, while right arcs are represented with / and >, so the decoding
process only needs to match the opening brackets < and / in a label `Bi with their corresponding
closing ones, \ and >, in a subsequent label `B>i

3.
Formally, the bracketing decoding parses the full sequence of brackets from left to right, match-

ing opening brackets (<, /) with subsequent closing ones (\, >) in the sequence. This process
is performed with a transition-based system of two stacks: σL ∈ [1, n]∗ for the left arcs and
σR ∈ [0, n]∗ for the right arcs; and a buffer β ⊆ `. Each stack keeps track of the positions of the
opening brackets that have been parsed, and the buffer stores the brackets that have not yet been
processed. In the initial state, σL is empty, σR only contains the index 0, β is initialized with the full
sequence brackets and the set of recovered arcs Â is empty. At each timestep t, the element located
at the front of the buffer, represented as β> = bi, contains the bracket symbol b ∈ B and the index i
of the label that is being processed. Depending on b and Â, the system performs one of these actions
using the elements at the top of σL and σR, denoted as σ>

L and σ>
R , respectively:

• Open-left : Removes β> and pushes i to σL.

• Open-right : Removes β> and pushes i to σR.

• Close-left : Adds (i→ σ>
L) to Â, pops σL and removes β>.

• Resolve-right : Adds (σ>
R → i) to Â and removes β>.

• Close-right : Adds (σ>
R → i) to Â, pops σR and remove β>.

• Skip: Removes β>.

Table 3.1 shows the bracketing decoding as a deductive system. See that open-left and open-right
actions are performed when the element at the front of the buffer is an opening bracket (< or /),
while close-left, resolve-right or close-right are executed when a closing bracket (\ or >) is found
in the buffer. Each stack is storing the opening positions of left and right arcs, respectively. Thus,
when a closing bracket is found, the system matches the positions of one of the stacks with the
current position of the front of the buffer. In case of the right arcs, the system might pop σR (with
the close-right action) or maintain the top element of σR (resolve-right). In fact, σR is only popped
when σR 6= 0. The index 0 is never removed from σR since the encoding assumes that all nodes with
the unmatched symbol >, correspond to a root node connected with w0.

See Table 3.2 for a better visualization of the decoding process of the graph in Figure 3.1. When
the symbol \i appears in the front of the buffer, the system tries to close a left bracket using the
element at the top of σL. Instead, when the symbol >i appears, the system tries to close a right
bracket from the top position stored at σR. Note that, when the sequence of brackets is well-formed,
the skip action is never used and σL is empty in the final state and σR only contains the index 0.

3 We use (> i) or (< i) as a subscript to denote a position that comes before i or after i, respectively.

23

Transition Preconditions Actions

open-left
(σL, σR, bi|β, Â)

(σL|i, σR, β, Â)
(b = <)

open-right
(σL, σR, bi|β, Â)

(σL, σR|i, β, Â)
(b = /)

close-left
|σL| > 0

(i→ σ>
L) /∈ A

(σL|σ>
L , σR, bi|β, Â)

(σL, σR, β, Â ∪ {(i→ σ>
L)})

(b = \)

resolve-right
|σR| > 0

(σ>
R → i) 6∈ Â

(σL, σR|σ>
R , bi|β, Â)

(σL, σR|σ>
R , β, Â ∪ {(σ>

R → i)})
(b = >, σ>

R = 0)

close-right
|σR| > 0

(σ>
R → i) 6∈ Â

(σL, σR|σ>
R , bi|β, Â)

(σL, σR, β, Â ∪ {(σ>
R → i)})

(b = >, σ>
R 6= 0)

skip
(σL, σR, bi|β, Â)

(σL, σR, β, Â)

Table 3.1: Bracketing decoding as a deductive system. Note that the transitions have an ordered
preference and, due to the symbol order in the bracket labels, is not possible to produce cycles of
length one. The skip transition is executed for unclosed left arcs or repeated arcs (arcs with the same
head and dependent).

However, when a sequence of labels produces unclosed arcs or repeated arcs, the system is able to
skip those symbols due to the preconditions defined for each action.

24

σL σR β> Â

0 /1
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s0 : τ1 open-right

0,1 >2
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s1 : τ2 close-right

0 <2
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s2 : τ3 open-left

2 0 \3
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s3 : τ4 close-left

0 >3
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s4 : τ5 resolve-right

0 /3 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s5 : τ6 open-right

0,3 >4 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s6 : τ7 close-right

0 <4 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s7 : τ8 open-left

4 0 \5 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

· · ·

· · ·
s8 : τ9 close-left

0 /5 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s9 : τ10 open-right

0,5 >6 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s10 : τ11 close-right

0 <6 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s11 : τ12 open-left

6 0 <6 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s12 : τ13 open-left

6,6 0 <6 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s13 : τ14 close-left

6 0 /9 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s14 : τ15 open-right

6 0,9 /10 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s15 : τ16 open-right
· · ·

· · ·

6 0,9,
10 /11 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s16 : τ17 open-right

6 0,9,
10,11 \12 w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s17 : τ18 close-left

0,9,
10,11 >12

w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s18 : τ19 close-right

0,9,
10 >12

w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12
/ >< \>/ >< \/ ><< \ / / / \>>>

s19 : τ20 close-right

0,9 >12
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

s20 : τ21 close-right

0
w0 w1 w2 w3 w4 w5 w6 w7 w9 w10 w11 w12

/ >< \>/ >< \/ ><< \ / / / \>>>

Table 3.2: Bracketing decoding for the graph in Figure 3.1. Words and arc labels have been removed for clarity, as well as the node w8 with its label
`8 since no arc is connected with it. The table is read from top to bottom and left to right: the columns represent the current state (σL, σR, β

>, Â), and
st−1 : τt represents the transition executed at timestep t. Note that the state obtained after transition t is represented in the next row. The dots (· · ·)
indicate that the table continues in the table of the next column. β> is colored in green and the system updates are colored in magenta.

25

Relaxed planarity Take a closer look at the two graphs displayed in Figures 3.2a and 3.2b (row
7) and their decoding process in Table 3.2d. The two graphs are different since they do not have the
same arcs. However, following the encoding described previously, they produce the same sequence
of labels, which clearly violates the injective property of the encoding transformation. and leads to
an inconsistent decoding process, which is not able to recover the second graph (Table 3.2d). This
inconsistency arises because the bracketing encoding is limited to only represent arcs that do not
cross in the same direction. The first graph (Figure 3.2a) contains some crossing arcs but in different
directions, while the second graph (Figure 3.2b) contains crossing arcs in the same direction.

(a) Relaxed 1-planar graph.

w0 w1 w2 w3 w4 w5

< / >< >\ \

(b) Relaxed 2-planar graph.

w0 w1 w2 w3 w4 w5

7 < / >< >\ \

P1: < > \

P2: /∗ <∗ >∗ \∗

1 2
3 4

(c) Relaxed 3-planar graph.

w0 w1 w2 w3 w4 w5

7: /< \/ > > >

P1: < \ >

P2: /∗ >∗

P3: /∗∗ >∗∗

1
2

3 4

(d) Incorrect decoding process for Figure 3.2b (row 7).

σL σR β> Â τt

s0 0 <1
w0 w1 w2 w3 w4 w5

< / >< >\ \ open-left

s1 1 0 /2
w0 w1 w2 w3 w4 w5

< / >< >\ \ open-right

s2 1 0,2 >3
w0 w1 w2 w3 w4 w5

< / >< >\ \ close-right

s3 1 0 <3
w0 w1 w2 w3 w4 w5

< / >< >\ \ open-left

s4 1,3 0 >4
w0 w1 w2 w3 w4 w5

< / >< >\ \ resolve-right

s5 1,3 0 \4 w0 w1 w2 w3 w4 w5

< / >< \ \
close-left

s6 1 0 \5 w0 w1 w2 w3 w4 w5

< / >< \ \
close-left

s7 0 w0 w1 w2 w3 w4 w5

< / >< \ \
close-left

Figure 3.2: Crossing examples for the bracketing encoding. Different relaxed-planes are colored in
red and blue. The numbers located above each arrow represent the order followed to distribute the
arcs in different relaxed-planes. See that row 7 leads to errors in the decoding process (Table 3.2d).
For Figure 3.2b, the solution relies on separately encoding each relaxed-plane (P1, P2) with different
symbols and concatenate them at token level, resulting in ` = (<,/∗,><∗,\>∗,\\∗). For Figure
3.2c, a third relaxed-plane is added (P1, P2, P3), resulting in ` = (</∗,\/∗∗,>,>∗,>∗∗).

We can check that this inconsistency arises for crossing arcs in the same direction with the arcs
created in the decoding process displayed in Table 3.2d. To recover the graph in Figure 3.2b, the
state s2 (close-right action) should use the position 0 in σR, not the index 2, which is the one that
is at the top of σR. The problem is that the stacks only store the previous opening brackets in each
direction, so introducing crossing arcs in the same direction adds an opening bracket between the

26

real brackets that should be matched.
To overcome this issue, we propose distributing the arcs in different relaxed-planes4, (i.e. mu-

tually exclusive subsets of A that do not contain crossing arcs in the same direction). This distribu-
tion follows a deterministic order (shown in Figures 3.2b and 3.2c) by increasingly sorting the arcs
of A by their left (min{h, d}) and right (max{h, d}) component, and iteratively assign them to the
lowest valid relaxed-plane. For instance, in Figure 3.2b the arcs (0 → 3) and (2 → 4) cross each
other in the same direction but (2→ 4) is the one sent to P2 because its left component is greater
than the left component of (0→ 3).

Once the arcs are distributed in different relaxed-planes, each one is independently encoded
with other set of equivalent brackets that only match with each other at decoding time (e.g. B∗ =

{\∗,>∗,<∗,/∗} for the second plane and B∗∗ = {\∗∗,>∗∗,<∗∗,/∗∗} for the third plane), and the
labels produced are concatenated at token level.

Figure 3.2c, shows a complex graph where three relaxed-planes are necessary to cover all the
arcs. Each one is encoded with different symbols – for the second relaxed-plane we use B∗ and
for the third, B∗∗ – resulting in three different sequences that separately encode each one: `1 =

(<,\,>, λ, λ)5 for P1, `2 = (/∗, λ, λ,>∗, λ) for P2 and `3 = (λ,/∗∗, λ, λ,>∗∗) for P3. The final
sequence concatenates `1, `2 and `3 at token level, so ` = (</∗,\/∗∗,>,>∗,>∗∗). The decoding
process of this sequence is displayed in Table 3.3. The labels are separated again by the relaxed-plane
they come from and are independently decoded to recover the corresponding arcs. At the end, the
recovered arcs of each process are joined to return a unique set of recovered arcs Â.

Hyperparameter k When extending the bracketing encoding to multiple relaxed-planes it is pos-
sible to modulate its coverage by fixing the number of supported relaxed-planes (k). For an input
graph, the encoding process first distributes its arcs in, at most, k relaxed-planes. Those arcs that
cannot be assigned in any relaxed-plane – since they cross with other arc in the same direction –
are ignored for the encoding, with the limitation of not being recovered after the decoding. Note
that when fixing k, the bracketing linearization is only able to recover graphs restricted to k or less
relaxed-planes. For example, in Figure 3.2c, if the encoding fixes k = 2, only P1 and P2 are encoded,
resulting in ` = (</∗,\,>,>∗, λ), and the bracketing linearization is limited to only recovering the
arcs in P1 and P2. Increasing k allows covering more complex arcs with a higher number of crossing
arcs in the same direction. In real datasets, setting k = 3 covers more than the 99% of the annotated
sentences in our treebanks, so k is usually restricted to the range [1, 3].

The full encoding process is formally defined in Algorithm 1. Note that the procedure dis-
tribute processes the arcs of A in a deterministic order6. Then encode-one encodes each relaxed-
plane as described in Section 3.2, adding to each symbol as many asterisks as the value of p. Each
label is concatenated at token level and the final sequence is returned as output.

The decoding process is defined in Algorithm 2. The main function is decode, which accepts
4 In the literature, the term plane usually refers to a subset of non-crossing arcs, independently of their direction. Under

this definition the graph of Figure 3.2a is 2-planar, but since the crossing arcs are in different directions, we say that it is
relaxed 1-planar.

5 Here we use λ to denote an empty string.
6 The function also arranges the arcs of an input set by their left and right components.

27

(a) Decoding of P1.
σL σR β

> Â

0 <1
w0 w1 w2 w3 w4 w5

< \ >

s0 : τ1 open-left

1 0 \2
w0 w1 w2 w3 w4 w5

< \ >

s1 : τ2 close-left

0 >3
w0 w1 w2 w3 w4 w5

< \ >

s2 : τ3 resolve-right

0 w0 w1 w2 w3 w4 w5

< \ >

(b) Decoding of P2.
σL σR β

> Â

/∗
1

w1 w2 w3 w4 w5

/∗ >∗

s0 : τ1 open-right

1 >∗
4

w1 w2 w3 w4 w5

/∗ >∗

s1 : τ2 close-right

w1 w2 w3 w4 w5

/∗ >∗

(c) Decoding of P3.
σL σR β> Â

/∗∗
2

w1 w2 w3 w4 w5

/∗∗ >∗∗

s0 : τ1 open-right

2 >∗∗
5

w1 w2 w3 w4 w5

/∗∗ >∗∗

s1 : τ2 close-right

w1 w2 w3 w4 w5

/∗∗ >∗∗

Table 3.3: Correct decoding process for the graph in Figure 3.2c. Same notation as in Table 3.2.
Each plane is separately decoded with a different procedure. For a clearer visualization, the red and
blue colors of the brackets of each relaxed-planes are suppressed though the asterisk remains to
distinguish them. Note that in the decoding of P2 and P3 σR is initialized as empty, instead of with
the index 0. This prevents creating root nodes in any relaxed-plane but P1, which is always correct
since, due to the deterministic arc distribution, the root nodes are always assigned to P1.

the sequence ` as input and the value of the hyperparameter k. In the main loop, the decoding
extracts the brackets in ` that previously belonged to the p-th relaxed-plane (for p = 1, .., k). The
function extract-labels obtains those brackets with p − 1 asterisks. For example, when calling
extract-labels((</∗,\/∗∗,>,>∗,>∗∗), 2) it will return (/∗, λ, λ,>∗, λ). The decode-one func-
tion performs the decoding process displayed in Table 3.1, recovering the arcs of the p-the relaxed-
plane. At the end, all the recovered arcs are joined to return a single set.

28

Algorithm 1 Bracketing encoding algorithm.
1: procedure encode(A,n, k)
2: D ← distribute(A, k)
3: `← (λ : i = 1, ..., n)
4: for p = 1, ..., |D| do
5: `′ ← encode-one(Dp, p− 1, n)
6: for i = 1, ..., n do
7: `i ← concat(`i, `′i)
8: return `
9:

10: procedure encode-one(A, p, n)
11: `← (λ : i = 1, ..., n)
12: for (h→ d) ∈ A do
13: if h > d then . left arc
14: `h ← concat(`h,\(∗)p)
15: `d ← concat(`d,<(∗)p)
16: else . right arc
17: `h ← concat(`h,/(∗)p)
18: `d ← concat(`d,>(∗)p)
19: return `

20: procedure distribute(A, k)
21: D ← (∅)
22: for a ∈ sort(A) do
23: p← 1
24: added← false
25: while not added and p ≤ |D| do
26: if not relaxed-cross(a,Dp) then
27: Dp ← Dp ∪ {a}
28: added← true
29: else
30: p← p+ 1

31: if not added and |D| < k then
32: push(D, {a})
33: return D
34:
35: procedure relaxed-cross(a,A)
36: for a′ ∈ A do
37: if cross(a, a′) and dir(a) = dir(a′) then
38: return true
39: return false

Algorithm 2 Bracketing decoding algorithm.
1: procedure decode(`, k)
2: Â← ∅
3: for p = 1, ..., k do
4: `p ← extract-labels(`, p, Â)
5: decode-one(`p, p, Â)
6: return Â
7:
8: procedure extract-labels(`, p)
9: `p ← (λ : i = 1, ..., |`|)

10: for `i ∈ ` do
11: for b ∈ `i do
12: if count(b, ∗) + 1 = p then
13: `pi ← concat(`pi , remove(b, ∗))
14: return `p

1: procedure decode-one(`, p, Â)
2: if p = 1 then
3: σR ← [0]
4: else
5: σR ← []

6: σL ← []
7: for `i ∈ ` do
8: for b ∈ `i do
9: if b = < then

10: push(σL, i)
11: else if b = / then
12: push(σR, i)
13: else if b = \ ∧ |σL| > 0 ∧ (i→ σ>

L) /∈ Â then
14: Â← Â ∪ {(i→ σ>

L)}
15: pop(σL)
16: else if b = > ∧ |σR| > 0 ∧ (σ>

R → i) /∈ Â then
17: Â← Â ∪ {σ>

R → i)}
18: pop(σR)

19: return Â

29

Chapter 4

Bounded linearizations

This chapter introduces our bounded linearizations for graph parsing. As seen in the previous
chapter, the positional and bracketing encodings do not limit the set of possible labels (L). In

the case of the positional encoding, L can grow with the sentence length when creating longer arcs.
On the other hand, the set of possible labels in the bracketing encoding can also grow by creating
denser graphs: adding more incoming connections to a node indefinitely increases the repetitions
of the symbols > and <, creating more labels in L.

We now introduce two types of bounded encodings, where the cardinality of L is fixed inde-
pendently of the length of the sentence or the density of the graph. The first one is named 4k-bit
encoding (Section 4.1) and the second is the 6k-bit encoding (Section 4.2). Both are modulated
by an hyperparameter k, which has a slightly similar meaning to the hyperparameter used in the
bracketing encoding. In both encodings, the original input set of arcs (A) is distributed in k mutu-
ally exclusive subsets that are independently processed through the specific encoding and decoding
functions.

Both linearizations are based on bits, so each label `i is a sequence of m bits, denoted as `i =
(b0i ...b

m−1
i) ∈ {0, 1}m. Specifically, in the 4k-bit encoding, m = 4k, while in the 6k-bit encoding,

m = 6k. By using m bits to represent a label, the cardinality of L is always fixed to |L| = 2m.

Notation Let ` = (`1, ..., `n) ∈ {0, 1}mn be the sequence of labels from the 4k or 6k-bit encoding.
As explained previously, each label is a sequence of 4k or 6k bits and it can be divided in k groups
(or bases) of 4 and 6 bits, respectively:

`i = (b0i ...b
4k−1
i) =

(p-th base of 4 bits︷ ︸︸ ︷
`pi ∈ {0, 1}

4
)k

p=1
4k-bit label (4.1)

`i = (b0i ...b
6k−1
i) =

(
`pi ∈ {0, 1}

6︸ ︷︷ ︸
p-th base of 6 bits

)k

p=1
6k-bit label (4.2)

As explained in the previous chapter, the bracketing encoding uses a different set of symbols
(distinguished with an asterisk) to encode different relaxed-planes and then concatenates the brack-
ets at token level to build each label (e.g. ><∗ in Figure 3.2). Similarly, in the 4k and 6k-bit encoding,
each label `i is also a concatenation of k bases of 4 or 6 bits, respectively, where each base `pi en-

30

codes the information of the p-th subset in which A is distributed. We denote these k subsets by
(T1, ..., Tk) and index them using the letter p.

For example, if a label of the 4k-bit encoding is of the form `i = (1001 1100), then k = 2

(since there are two groups of 4 bits) and the first base is denoted as `11 = 1001 and encodes the
information of the subset T1, while the second base is `21 = 1100 and encodes the information of
T2. This is formally specified in Equations 4.1 and 4.2, where `pi denotes the 4-bit or 6-bit base used
to encode the i-th label with the arc information of the p-th subset (Tp). Note that the subscript i
always denotes the position in the input sentence, while the superscript p denotes the subset Tp that
is being considered.

When separating the p-th base of each label `i ∈ `, the result is denoted as `p = (`p1, ..., `
p
n)1

and we say that `p is the p-th subsequence of `. Note that `p is obtained after encoding Tp, and
recovers Tp again through the decoding process. Thus, to fully recover A from the encoding and
decoding operations, the bit linearization first distributesA into (T1, ..., Tk) and separately encodes
each subset Tp to obtain `p, for p = 1, ..., n. Then, the decoding process independently processes
each `p to rebuild a subset of arcs T̂p. The final set of recovered arcs is obtained as Â =

⋃k
p=1 T̂p.

Figure 4.1 displays how the notation is used for the 4k-bit encoding where k = 3. The labels
generated in the 4k-bit encoding with k = 3 have 12 bits that are grouped in bases of 4 bits (e.g.
`1 = (0100 1101 1101) has 12 bits that are obtained after concatenating `11 = 0100, `21 = 1101 and
`31 = 1101). The encoding and decoding operations independently process each subsequence (`1, `2

and `3).

w0 w1 w2 w3 w4 w5 w6

B43: 0100 [`11] 1111 [`12] 1101 [`13] 1000 [`14] 101 [`15] 1100 [`16] • [`1]
1101 [`21] 1000 [`22] 0100 [`23] 1000 [`24] 101 [`25] 1110 [`26] • [`2]
1101 [`31] 1101 [`32] 1101 [`33] 1101 [`34] 101 [`35] 1100 [`36] • [`3]

`1 `2 `3 `4 `5 `6

1
2

3

4

5

6

7

8 9

Figure 4.1: Graph example and notation of the 4k-bit labels with k = 3 (B43). The numbers located
above each arc denote the order followed to distribute them in the k subsets. The arcs assigned to
the first subset T1 are colored in black, the arcs of the second subset T2 are colored in red, and the
arcs of the third plane T3 are colored in blue.

4.1 4k-bit encoding

This section describes the encoding and decoding process of the 4k-bit linearization. In general
terms, the 4k-bit algorithm first distributes the arcs of A in k mutually exclusive subsets (T1, .., Tk).
Then, independently applies the encoding procedure to each subset.

1 In the 4k-bit encoding, `p ∈ {0, 1}4n, while in the 6k-bit encoding, `p ∈ {0, 1}6n.

31

Arc distribution To effectively encode an input set of arcs (A), the encoding process first sorts
the arcs of A2 and then distributes them into k mutually exclusive subsets, denoted as (T1, .., Tk),
where each subset Tp for p = 1, .., k, satisfies the following conditions:

1. There are no crossing arcs in the same direction.

2. Each node must have one and only one incoming arc.

The distribution algorithm initializes the k subsets as empty and then processes the arcs of A
in order. For each arc (h → d), it tries to assign it to the first subset T1 if: (i) there is no crossing
arc in T1 in the same direction and (ii) wd has no other incoming arc in T1. If these conditions are
not satisfied, the algorithm tries with the next subset T2 and so on until the k subsets are processed.
If it is not possible to assign the arc in any subset, this means that the graph requires more than k

subsets to be fully represented with the 4k-bit encoding and those arcs are discarded.
After distributing the arcs of an input set A, there is an issue with the condition (2). As defined

in the properties of Section 2.2, it might happen that a node in a graph does not have any incoming
arc, and thus it would not be possible to fulfill the condition (2) in any subset Tp. To solve this issue,
the 4k-bit encoding creates artificial arcs that are located always from the previous node to encode
each subset Tp.

Figure 4.1 shows the initial distribution with different colors and Figure 4.2 shows the final
distribution after creating the artificial arcs (displayed with dotted lines). See that each subset fulfills
the two conditions previously exposed: (1) each subset does not have crossing arcs in the same
direction (T2 has crossing arcs but in different directions), and (2) all nodes have one and only one
incoming arc in each subset by creating artificial arcs (T1 creates only one incoming arc to w4 but
in T3 almost all arcs are artificial).

(a) 4k-bit encoding of T1.

w0 w1 w2 w3 w4 w5 w6

T1: 0100 1111 1101 1000 1101 1100

(b) 4k-bit encoding of T2.

w0 w1 w2 w3 w4 w5 w6

T2: 1101 1000 0100 1000 1101 1110

(c) 4k-bit encoding of T3.

w0 w1 w2 w3 w4 w5 w6

T3: 1101 1101 1101 1101 1101 1100

Figure 4.2: 4k-bit encoding of the graph introduced in Figure 4.1. Artificial arcs are displayed with
dotted lines, and the bits associated with them are underlined.

2 Ordering the arcs ofA is necessary to ensure that the subset assignment is deterministic. In practice, we sort the arcs
of A by the left and right component.

32

Encoding Once the arcs of A are distributed into the k subsets (and artificial arcs are created to
ensure that each node has one head), each subset Tp is independently encoded using 4 bits per label,
denoted as `pi = (bp.0i bp.1i bp.2i bp.3i), where each bit is activated (i.e. set to 1) under the following
conditions:

• bp.0i is activated if wi has a left head in Tp.

• bp.1i is activated if wi is the outermost dependent of its head in the same direction3 in Tp.

• bp.2i is activated if wi has left dependents in Tp.

• bp.3i is activated if wi has right dependents in Tp.

See the example graph in Figure 4.1: the labels `24 and `25 of the subset T2 (in red) are `24 = 1000 and
`25 = 1101. For both, the first bit (b2.04 and b2.05) is activated, since they share the same left head in
T2. Only the second bit of `25 is activated, since the node w5 is the farthest dependent of the shared
left head in T2. Finally, only `25 has the last bit activated since it has a right dependent (w6), while
w4 does not have any dependents, so the last two bits of its label `24 are set to 0. We have underlined
the last bit of `25 to better remark that this bit is representing an artificial arc, although in practice
we do not have this distinction.

Algorithm 3 formalizes the encoding process of the 4k-bit encoding, The main function is en-
code, which takes the set of arcsA, the size of the graph and the value of the hyperparameter k and
returns the final label sequence ` = (`1, ..., `n) ∈ {0, 1}4kn. The encode-one function performs the
actual encoding of each subset Tp and returns the p-th subsequence `p = (`p1, ..., `

n
p) ∈ {0, 1}4n. The

function relaxed-cross is the same as in Algorithm 1. See that each subset Tp is passed through the
create-artificial function before encoding to create the artificial arcs using the previous position
of each node with no assigned head. Lines 20-21 specify the outermost dependent condition, where
the function dir determines the direction of an arc (h→ d), specifically, dir(h→ d) = sign(d−h).

Decoding Similarly to the bracketing linearization, the 4k-bit decoding relies on a stack-based
transition system to recover the arcs of a certain subset Tp given its corresponding subsequence
of labels `p = (`p1, ..., `

p
n). The system pushes and pops elements from a buffer β ⊆ `p to two

different stacks, σL ∈ ([1, n] × {0, 1})∗ for left arcs and σR ⊆ [1, n]∗ for right arcs; and creates
arcs between the elements at the front of the buffer and at the top of the stacks. In the initial state,
s0 = ([], [0], `p, ∅), the left stack is empty, the right stack contains the node 0, the buffer contains the
subsequence of bits corresponding to the subset Tp and the set of predicted arcs (T̂p) is empty. The
element at the top of the buffer is the p-th base of the i-th label, β> = `pi = (bp.0i bp.1i bp.2i bp.3i); and
the element at the top of σL is a tuple denoted as σ>

L = (σd
L , σ

ω
L), where σd

L ∈ [1, n] and σω
L ∈ {0, 1}.

In fact, σd
L represents the position of the left arc that has been opened in previous labels and needs

a buffer position to be closed. σω
L instead represents whether the dependent of this left arc is the

leftmost one or more elements of σL need to be popped to recover all the left arcs associated with
the buffer position. The system defines the following actions depending on the bits of β>:

3 Note that the second bit only considers other dependents in the same direction, so, given wi and its associated
incoming arc (h→ i) ∈ Tp, bp.1i is activated if @(h→ j) ∈ Tp where sign(h− j) = sign(h− i) and |h− j| > |h− i|.

33

Algorithm 3 4k-bit encoding algorithm.
1: procedure encode(A,n, k)
2: T ← distribute(A, k)
3: `← (λ : i = 1, ..., n)
4: for p = 1, ..., |T | do
5: Tp ← create-artificial(Tp, n)
6: `′ ← encode-one(Tp, n)
7: for i = 1, ..., n do
8: `i ← concat(`i, `′i)
9: return `

10:
11: procedure encode-one(A,n)
12: `← (0000 : i = 1, ..., n)
13: for α := (h→ d) ∈ A do
14: if h > d then
15: `2h ← 1
16: else
17: if h 6= 0 then
18: `3h ← 1

19: `0d ← 1

20: if @α′ := (h→ d′) ∈ A :
21: dir(α) = dir(α′) ∧ |α| < |α′| then
22: `1d ← 1

23: return `

24: procedure distribute(A, k)
25: T ← (∅)
26: for α := (h→ d) ∈ sort(A) do
27: p← 1
28: added← false
29: while not added and p ≤ |T | do
30: if not (relaxed-cross(α, Tp)
31: or assigned(d, Tp)) then
32: Tp ← Tp ∪ {α}
33: added← true
34: else
35: p← p+ 1

36: if not added and |T | < k then
37: push(T, {a})
38: return D
39:
40: procedure assigned(d,A)
41: for (h′ → d′) ∈ A do
42: if d′ = d then
43: return true
44: return false
45:
46: procedure create-artificial(A,n)
47: for d = 1, ..., n do
48: if not assigned(d,A) then
49: add(A, ((d− 1)→ d))

50: return A

• Resolve-left : Adds (i→ σd
L) to T̂p and pops σL.

• Close-left : Adds (i→ σd
L) to T̂p, pops σL and updates the third bit (bp.2i ← 0) of β>.

• Resolve-right : Adds (σ>
R → i) to T̂p.

• Close-right : Adds (σ>
R → i) to T̂p and pops σR.

• Open-right : Pushes i to σR.

• Open-left : Pushes (i, bp.1i) to σL.

• Skip: Removes the element at the front of β.

Table 4.1 shows the 4k-bit decoding as a deductive system and Table 4.2 shows a decoding
example step-by-step of the graph displayed in Figure⁇. The 4k-bit decoding process resembles the
bracketing decoding system (Table 3.1): there are opening actions (open-right and open-left), which
add elements to σR and σL, and closing actions (resolve-right, close-right, resolve-left and close-left),
which add new arcs to T̂p (the set o f recovered arcs) by creating connections between i (the index of
the label that is located at the front of the buffer) and the top of σL or σR. Note that in the bracketing
decoding system, each opening or closing action ended removing the element at the front of the
buffer, thus searching for new bracket symbols in `. In the 4k-bit encoding, the skip transition is
the only one that removes the elements of the buffer, and it must be explicitly called to force the
transition system to look up for the next labels.

34

Transition Precondition Action

resolve-left
|σL| > 0

(i→ σd
L) /∈ T̂p

(
σL|(σd

L , σ
ω
L), σR, b

0b1b2b3|β, T̂p

)(
σL, σR, b0b1b2b3|β, T̂p ∪ {(i→ σd

L)}
)(b2 = 1, σω

L = 0)

close-left
|σL| > 0

(i→ σd
L) /∈ T̂p

(
σL|(σd

L , σ
ω
L), σR, b

0b1b2b3|β, T̂p

)(
σL, σR, b0b10b3|β, T̂p ∪ {(i→ σd

L)}
)(b2 = 1, σω

L = 1)

resolve-right
|σR| > 0

(σ>
R → i) /∈ T̂p

(
σL, σR|σ>

R , b0b1b2b3|β, T̂p

)(
σL, σR|σ>

R , b0b1b2b3|β, T̂p ∪ {(σ>
R → i)}

)(b0b1 = 10)

close-right
|σR| > 0

(σ>
R → i) /∈ T̂p

(
σL, σR|σ>

R , b0b1b2b3|β, T̂p

)(
σL, σR, b0b1b2b3|β, T̂p ∪ {(σ>

R → i)}
)(b0b1 = 11)

open-right σ>
R 6= i

(σL, σR, b
0b1b2b3|β, T̂p)(

σL, σR|i, b0b1b2b3|β, T̂p

)(b3 = 1)

open-left σd
L 6= i

(σL, σR, b
0b1b2b3|β, T̂p)(

σL|(i, b1), σR, b0b1b2b3|β, T̂p

)(b0 = 0)

skip
(σL, σR, b

0b1b2b3|β, T̂p)(
σL, σR, β, T̂p

)
Table 4.1: 4k-bit decoding as a deductive system. For better readability, the 4 bits at the front of
the buffer are represented as b0b1b2b3. Note that the transitions have an order preference. The skip
transition is always executed once closing and opening actions have been performed.

We first analyze the meaning of the opening actions in Table 4.1. Open-right is performed when
bp.3i is activated, i.e. when wi has a dependent in future positions w>i. Open-left is performed when
bp.0i = 0, i.e. when wii has a head in future positions w>i. Both actions are computed only once,
since the preconditions ensure that, when the index i is added to one stack, it is not possible to add
it again. The opening actions are creating unclosed right and left arcs: open-right stores the head
position of a right arc (which needs to be closed with right dependents that will come in future labels
of the form `>i = 1 · · ·), while open-left stores the dependent position of a left arc (which will be
resolved with a future label of the form `>i = · · 1·).

Now let’s take a look to the closing transitions (resolve-right, close-right, resolve-left and close-

left). Close-right is exactly the same as resolve-right but with the exception that close-right pops σR.
This means that, when performing close-right, we are no longer able to recover right arcs where
σ>
R is the head. Thus, when conditioning close-right to a new label where bp.0i bp.1i = 11, we are

effectively controlling that no arcs of the form (σ>
R → (> i)) exist since bp.1i = 1 indicates that wi

is the rightmost dependent of its head. Alternatively, the close-left and resolve-left are almost the
same: they are both performed when bp.2i = 1, which indicates that wi has left dependents which
positions are stored in σL, and close a left arc of the form i → σd

L . However, the close-left action
updates bp.2i = 0 to prevent other resolve-left or close-left actions to be performed with the current
label. This occurs when σω

L = 1, which indicates that σd
L is the leftmost dependent of its parent, so

no more arcs of the form i→ (< σd
L) should be added to T̂p.

Algorithm 4 shows the pseudocode of the 4k-bit decoding. The main function, as in Algorithm

35

2, is encode, which independently decodes each subsequence and joins its subset of recovered arcs
to return a single set Â. In the main loop, the encode function uses the get-subseqence function
to extract the p-th base of each label in `. Note that `p ∈ {0, 1}4n corresponds to the p-th subse-
quence of bits that encodes the information of Tp. Then, the decode-one function implements the
transition-based system that parses `p creating new arcs.

Algorithm 4 4k-bit decoding algorithm.
1: procedure decode(`, k)
2: Â← ∅
3: for p = 1, ..., k do
4: `p ← get-subseqence(`, p)
5: Â← decode-one(`p, Â)

6: return Â

7: procedure get-subseqence(`, p)
8: `p ← (λ : i = 1, ..., |`|)
9: for i = 1, ..., |`| do

10: (b0i , ..., b
4k
i)← `i

11: `pi ← (b
4(p−1)
i , ..., b4p−1

i)

12: return `p

13: procedure decode-one(`, Â)
14: σR ← [0]; σL ← []
15: for `i := (b0b1b2b3) ∈ ` do
16: if b2 = 1 ∧ |σL| > 0 ∧ (i→ σL) /∈ Â then
17: (σd

L , σ
ω
L)← pop(σL)

18: while σω
L 6= 1 do

19: Â← Â ∪ {(i→ σd
L)}

20: (σd
L , σ

ω
L)← pop(σL)

21: Â← Â ∪ {(i→ σd
L)}

22: if b0 = 1 ∧ |σR| > 0 ∧ (σ>
R → i) /∈ Â then

23: if b1 = 1 then
24: Â← Â ∪ {(pop(σR)→ i)}
25: else
26: Â← Â ∪ {(σ>

R → i)}
27: if b3 = 1 then
28: push(σR, i)

29: if b0 = 0 then
30: push(σL, (i, b

1))

31: return Â

Postprocessing The 4k-bit might create artificial arcs to consistently encode each subset. This
poses a problem when recovering the original arcs from the decoding process, since there is no way
to know if a right arc of the form ((i− 1) → i) is artificial or comes from the real input graph. To
solve this problem, in practice, the artificial arcs are labeled with an special relationship type rNULL

that allows distinguishing them from real arcs (which are labeled with a real relationship r ∈ R)
and removing them in the postprocessing step.

Relation with the bracketing encoding When analyzing the information represented in each
bit, one might come to the conclusion that the 4k-bit encoding is a compact reformulation of the
bracketing encoding where repeated brackets are contracted in a single symbol. In fact, there is a
close relation between the brackets represented in a single label and the bits that are activated in
the 4k-bit encoding. The third bp.2i and fourth bp.3i bits are activated with the presence of at least
one slash symbol, \ and /, respectively, since they indicate that there is left or right arc from the
current node wi. In the 4k-bit encoding, instead of having multiple repetitions of \ or / to indicate
how many dependents the node has, all of them are encoded in two bits, which indicates if there
is at least one dependent in each direction. The arrow symbols > and < are encoded with the first
(bp.0i) and second (bp.1i) bit. Since each susbet Tp is constrained to have a unique incoming arc for
each node, in the bracketing encoding this is translated into having in each label either the arrow
> or <. If the incoming arc comes from the left, the arrow used is > and the first bit is activated. If

36

σL σR β> Â

0 0100
w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ open-left

(1,1) 0 0100
w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ skip

(1,1) 0 1111
w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ close-right

(1,1) 1111 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ close-left

1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ open-right

2 1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ skip

2 1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ close-right

1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ open-right

3 1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ skip
· · ·

· · ·

3 000 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ resolve-right

3 1000 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 1000 1101 1100

τ skip

3 1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ close-right

1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ open-right

5 1101 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ skip

5 1100 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ close-right

1100 w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

τ skip

w0 w1 w2 w3 w4 w5 w6

0100 1111 1101 000 1101 1100

Table 4.2: 4k-bit decoding process for the subset T1 of the graph in Figure 4.2. The continuation
of the table is displayed in a second column. The updates of σL, σR and Â are colored in magenta
and the key elements that are used to apply a transition are colored in green. For example, the first
transition is open-left, which is executed since the first bit of β> = 0100 is not activated, and σL is
updated in the next state with (1, 1).

the incoming arc comes from the right, the arrow used is < and bit is deactivated. The second bit
bp.1i is used to represent when the head of wi does not have further dependents, so its position can
be skipped at decoding time and removed from its respective stack. Note that, since the first bit can
only represent two situations (whether a head that comes from the left or the right) there is no way
to represent the absence of a head or the presence of multiple heads, so the subset Tp requires each
node to have only one head.

Figure 4.4 shows a comparison of the bracketing and 4k-bit encoding, where we can see the
equivalence of each bit into bracket symbols. The arrows colored in magenta match with the ac-

37

tivation of the second bit, since they indicate that they are the leftmost or rightmost dependent of
its head. Table 4.3 shows the decoding procedure of each encoding and how a lot of states of the
bracketing and 4k-bit decoding match each other through a different sequence of transitions. In
fact, the main difference between the bracketing and 4k-bit encoding when closing arcs is that the
bracketing encoding, when closing an arc, always pops the element of the corresponding stack, thus
requiring repeated positions in each stack when more arcs are connected to the index stored. The
4k-bit encoding allows storing each position only once, and use the second bit (stored in the left
stack or in the label of the right dependent) to decide whether to pop the head of σR or continue
creating left arcs by popping σL.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

B1 < < < \\< \\>/// > >/ > >

B41 0100 0100 0000 0010 1111 1000 1001 1100 1100

Figure 4.4: Comparison of the bracketing (B1) and 4k-bit (B41) encoding where k = 1. Arrows of
the rightmost and leftmost dependents of each head are colored in magenta. See that the arrows <
and > are always represented in the 4k-bit encoding with the second bit activated (also in magenta).

38

B1 B41 Â τ(B1) τ(B41)
σL σR β> σL σR β>

0 < 0 0100
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

open-left
open-left
skip

1 0 < (1,1) 0 0100
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

open-left
open-left
skip

1,2 0 < (1,1),
(2,1) 0 0000

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100
open-left

open-left
skip

1,2,
3 0 \

(1,1),
(2,1),
(3,0)

0 0010
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

close-left resolve-left

1,2 0 \
(1,1),
(2,1) 0 0010

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100
close-left close-left

1 0 < (1,1) 0 0000 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

open-left
open-left
skip

1,4 0 \
(1,1),
(4,0) 0 1111 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

close-left resolve-left

1 0 \ (1,1) 0 1111 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

close-left close-left

0 > 0 1101 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

resolve-right close-right

· · ·

· · ·

0 /// 1101 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

open-right
open-right
open-right

open-right
skip

0,5,
5,5 > 5 1000 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

close-right
resolve-right

skip

0,5,
5 > 5 1001 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

close-right
resolve-right

skip

0,5 / 5 1001 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

open-right
open-right

skip

0,5,
7 > 5,7 1100 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

< < < \\< \\>/// > >/ > >
0100 0100 0000 0010 1111 1000 1001 1100 1100

close-right
close-right

skip

0,5 > 5 1100 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

close-right
close-right

skip

0 w0 w1 w2 w3 w4 w5 w6 w7 w8 w9
< < < \\< \\>/// > >/ > >

0100 0100 0000 0010 1111 1000 1001 1100 1100

Table 4.3: Comparison of the bracket and 4k-bit decoding for the Figure 4.4. The first three columns show the state of the bracketing decoding system
and the next three columns the 4k-bit decoding system. Same colors as in Tables 3.2 and 4.2. The second column is the continuation of the decoding
process. We show the bracketing decoding transitions in τ(B1) and the 4k-bit decoding transition in τ(B41).

39

4.2 6k-bit encoding

The main drawback of the 4k-bit linearization is its limitation to graphs with one and only one
parent per node, since only one bit is used to determine if the parent of wi comes from the left or
from the right, thus creating a several amount of artificial arcs (Figure 4.2). The 6k-bit encoding
solves this issue by expanding the first bit of the 4k-bit encoding into two bits that encode whether
a node has a left or right parent. Note that two bits can encode four different situations wherewi (1)
has only a left parent, (2) has only a right parent, (3) has both a left and a right parent or (4) has no
parent. The second bit of the 4k-bit encoding is also expanded in other two bits that encode whether
wi is the outermost dependent of its left and right parent (if exists). By expanding the first two bits
of the 4k-bit encoding into four bits, we propose a new linearization dubbed as 6k-bit encoding.

Similarly, the 6k-bit encoding is restricted to represent the presence of, at most, one parent per
node in each direction. Trying to encode more than one parent per direction will lead to ambiguities
at decoding time since the decoding system will not be able to recognize whether it should maintain
opened positions in the stacks or remove them.

Arc distribution As for the 4k-bit encoding, the 6k-bit encoding defines a distribution function
to assign arcs to the k subsets (T1, ..., Tk) such that each subset fulfills the following conditions:

• There are no crossing arcs in the same direction.

• Each node cannot have more than one incoming arc per direction.

Figure 4.5 shows the arc distribution of the 6k-bit encoding for the example in Figure 4.1. The
number of required subsets to cover all arcs is the same as in the 4k-bit encoding, although for other
graphs k does not need to match between both algorithms. See that each subset has no crossing arcs
in the same direction and nodes are only allowed to have, at most, one incoming arc per direction.
For instance,w3 in T1 (black) has two incoming arcs but from different directions, while others, such
as w4 in T1, might not have any incoming arc.

w0 w1 w2 w3 w4 w5 w6

B63: 000110 [`11] 111001 [`12] 111110 [`13] 000000 [`14] 111000 [`15] 110001 [`16] • [`1]
001000 [`21] 000000 [`22] 000000 [`23] 100000 [`24] 110000 [`25] 000000 [`26] • [`2]
000000 [`31] 000000 [`32] 000000 [`33] 001000 [`34] 110000 [`35] 000000 [`36] • [`3]

1
2

3

4

5

6

7

8 9

Figure 4.5: Graph example of Figure 4.1 and notation of the 6k-bit labels with k = 3 (B63). Same
color legend as in Figure 4.1: the numbers located above each arc denote the distribution order, the
arcs of T1 are colored in black, T2 in red and T3 in blue.

40

Encoding As for the 4k-bit encoding, the 6k-bit encoding independently encodes each subset Tp

using 6 bits per label, denoted as `pi = (bp.0i bp.1i bp.2i bp.3i bp.4i bp.5i), and then the labels are concatenated
at token level to obtain `i = (`1i , ..., `

k
i) ∈ {0, 1}6k. In the base `pi , each bit is activated under the

following conditions:

• bp.0i is activated if wi has an incoming arc from the left.

• bp.1i is activated if wi is the rightmost dependent of its head.

• bp.2i is activated if wi has right dependents.

• bp.3i is activated if wi has an incoming arc from the right.

• bp.4i is activated if wi is the leftmost dependent of its head.

• bp.5i is activated if wi has left dependents.

See that the arrangement of each bit in the 6k-bit encoding differs from the 4k-bit encoding.
The 4k-bit encoding uses the first two bits to encode the information of the head of wi and the last
two bits for the dependents of wi. The 6k-bit encoding instead uses the first three bits to encode the
information of the right arcs connected to wi (left head and right dependents) and the last three bits
for the left arcs (right head and left dependents).

`pi = (

right arcs︷ ︸︸ ︷
bp.0i bp.1i bp.2i bp.3i bp.4i bp.5i︸ ︷︷ ︸

left arcs

) (4.3)

Figure 4.5 also shows the labels obtained after encoding each subset. Let’s take a look to `13 =

111110, which encodes the arc information of w3 in T1 (black arcs). There are two right arcs {(2→
3), (3 → 5)} and one left arc (6 → 3) connected with w3, either as a head or as a dependent. The
information of the two right arcs is displayed in the first three bits, 111. The first one indicates
that w3 has a left head and the third one indicates that w3 also has right dependents. The second
bit indicates that w3 is the rightmost dependent of its left head. The information of the left arc is
encoded in the second group of bits, 110, where the fourth and fifth bits activated have an analogous
meaning as the first and second bit but for the left arcs: w3 has a right head and it is its leftmost
dependent. The last bit is not activated, which means that there are no left dependents for w3.

Algorithm 5 shows the formal definition of the 6k-bit encoding process. The main function is
encode, which takes the input set of arcs A, the graph’s size and the value of the hyperparameter
k. First, it distributes A into k subsets using the function distribute, which processes the arcs
of A in order and tries to add each arc to the lowest valid subset. To ensure that adding a new
arc α in a subset Tp is supported by the encoding, the algorithm uses the function relaxed-cross
(inherited from Algorithm 1) and relaxed-assigned, which ensure that there are no arcs in Tp

that cross α or have the same dependent in the same direction. Once the arcs are distributed, each
subset is encoded with the function encode-one, which processes the arcs activating the bits in the
label of its corresponding head and dependent. The function is-outermost allows identifying if the

41

dependent of an arc is the outermost dependent of its head in the same direction. The encode-one
function returns a sequence of labels of the form `p ∈ {0, 1}6n, and it is concatenated at token level
to return ` ∈ {0, 1}6kn.

Algorithm 5 6k-bit encoding algorithm.
1: procedure encode(A,n, k)
2: D ← distribute(A, k)
3: `← (λ : i = 1, ..., n)
4: for p = 1, ..., |D| do
5: `′ ← encode-one(Tp, n)
6: for i = 1, ..., n do
7: `i ← concat(`i, `′i)
8: return `
9:

10: procedure encode-one(A,n)
11: `← (000000 : i = 1, ..., n)
12: for α := (h→ d) ∈ A do
13: if h > d then
14: `3d ← 1
15: `5h ← 1
16: ι← 4
17: else
18: if h 6= 0 then
19: `2h ← 1

20: `0d ← 1
21: ι← 1
22: if is-outermost(α,A) then
23: `ιd ← 1

24: return `

1: procedure distribute(A, k)
2: T ← (∅)
3: for a := (h→ d) ∈ sort(A) do
4: p← 1
5: added← false
6: while not added and p ≤ |D| do
7: if not (relaxed-cross(a, Tp)
8: or relaxed-assigned(d,Dp)) then
9: Tp ← Tp ∪ {a}

10: added← true
11: else
12: p← p+ 1

13: if not added and |D| < k then
14: push(D, {a})
15: return D
16:
17: procedure relaxed-assigned((h→ d), A)
18: for α′ := (h′ → d′) ∈ A do
19: if d′ = d ∧ dir(h→ d) = dir(α′) then
20: return true
21: return false
22:
23: procedure is-outermost((h→ d), A)
24: for α′ := (h→ d′) ∈ A : d′ 6= d do
25: if dir(α′) = dir(h→ d) ∧ |h− d| < |α′| then
26: return false
27: return true

Decoding The 6k-bit decoding process relies on a transition system similar to the 4k-bit encod-
ing. The sequence of labels ` is factorized into the k subsequences (`1, ..., `k). Each subsequence `p,
for p = 1, .., k is independently processed by the transition system to recover the corresponding
subset of arcs T̂p.

The transition system has the same components as the ones described in the 4k-bit decoding. The
buffer β ⊆ `p stores the labels that have not been parsed yet. Two stacks, σL ∈ ([1, n]×{0, 1})∗ and
σR ∈ [1, n]∗, store the opened positions of the left and right arcs that need to be resolved with future
labels. The system is initialized as in the 4k-bit decoding, so s0 = ([], [0], `p, ∅). The element at the
top of the buffer is the p-th base of the i-th label, denoted as β> := `pi = (bp.0i bp.1i bp.2i bp.3i bp.4i bp.5i);
and σ>

L is also the tuple (σd
L , σ

ω
L) ∈ [1, n] × {0, 1} that stores the opened position of a left arc and

the indicator of whether the dependent σd
L is the leftmost dependent of its head or not.

The system defines the same actions as the 4k-bit decoding system:

• Resolve-left : Adds (i→ σd
L) to T̂p and pops σL.

• Close-left : Adds (i→ σd
L) to T̂p, pops σL and updates the last bit (bp.5i ← 0) of β>.

• Resolve-right : Adds (σ>
R → i) to T̂p.

42

• Close-right : Adds (σ>
R → i) to T̂p and pops σR.

• Open-right : Pushes i to σR.

• Open-left : Pushes (i, bp.1i) to σL.

• Skip: Removes the element at the front of β.

Table 4.4 defines the 6k-bit decoding as a deductive system. Although the 4k and 6k-bit decoding
share the same set of actions, the premises differ from each other. The resolve-left and close-left

actions are performed when the last bit (bp.5i) is activated. The fifth bit (bp.4i) is the one introduced
in the left stack to track whether wi is the leftmost dependent of its right head.

Transition Precondition Action

resolve-left
|σL| > 0

(i→ σd
L) /∈ T̂p

(
σL|(σd

L , σ
ω
L), σR, b

0b1b2b3b4b5|β, T̂p

)(
σL, σR, b0b1b2b3b4b5|β, T̂p ∪ {(i→ σd

L)}
)(b5 = 1, σω

L = 0)

close-left
|σL| > 0

(i→ σd
L) /∈ T̂p

(
σL|(σd

L , σ
ω
L), σR, b

0b1b2b3b4b5|β, T̂p

)(
σL, σR, b0b1b2b3b40|β, T̂p ∪ {(i→ σd

L)}
)(b5 = 1, σω

L = 1)

resolve-right
|σR| > 0

(σ>
R → i) /∈ T̂p

(
σL, σR|σ>

R , b0b1b2b3b4b5|β, T̂p

)(
σL, σR|σ>

R , b0b1b2b3b4b5|β, T̂p ∪ {(σ>
R → i)}

)(b0b1 = 10)

close-right
|σR| > 0

(σ>
R → i) /∈ T̂p

(
σL, σR|σ>

R , b0b1b2b3b4b5|β, T̂p

)(
σL, σR, b0b1b2b3b4b5|β, T̂p ∪ {(σ>

R → i)}
)(b0b1 = 11)

open-right σ>
R 6= i

(σL, σR, b
0b1b2b3b4b5|β, T̂p)(

σL, σR|i, b0b1b2b3b4b5|β, T̂p

)(b2 = 1)

open-left σd
L 6= i

(σL, σR, b
0b1b2b3b4b5|β, T̂p)(

σL|(i, b4), σR, b0b1b2b3b4b5|β, T̂p

)(b3 = 1)

skip
(σL, σR, b

0b1b2b3b4b5|β, T̂p)(
σL, σR, β, T̂p

)
Table 4.4: 6k-bit decoding as a deductive system. Same notation as in Table 4.1.

Table 4.5 shows the 6k-bit decoding process for the first subset T1 (black arcs) displayed in Figure
4.5. See that the behavior is really similar to the 4k-bit decoding (Table 4.2) but focusing on different
components of the system to perform an action. See also that the 6k-bit decoding allows skipping
positions without creating any arc (for the label `14 = 000000).

Algorithm 6 shows the pseudocode of the 6k-bit decoding. Note that it is almost the same as
the 4k-bit decoding (Algorithm 4) – in fact, the is-valid function is exactly the same. Only the
positions of some bits change: b2 in Algorithm 4 is replaced by b5 (line 25), b3 is replaced by b2 in
line 36, b0 = 0 is replaced by b3 = 1 in line 38 and b1 is replaced by b4 in line 39.

43

σL σR β> Â

0 000110
w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ1 open-left

(1,1) 0 000110
w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ2 skip

(1,1) 0 111001
w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ3 close-left

0 111000
w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ4 close-right

111000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ5 open-right

2 111000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ6 skip

2 111110 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ7 close-right

111110 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ8 open-right

3 111110 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ9 open-left
· · ·

· · ·

(3,1) 3 111110 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ10 skip

(3,1) 3 000000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ11 skip

(3,1) 3 111000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ12 close-right

(3,1) 111000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ13 open-right

(3,1) 5 111000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ14 skip

(3,1) 5 110001 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ15 close-left

5 110000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ16 close-right

110000 w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

τ17 skip

w0 w1 w2 w3 w4 w5 w6

000 111 111 000 111 110
110 001 110 000 000 001

Table 4.5: 6k-bit decoding for T1 in Figure 4.5. Same notation as in Table 4.2. For space limitation,
the 6 bits in each base are separated in two groups (the first three bits are displayed in the first row
and the last three bits in the second row).

44

Algorithm 6 6k-bit decoding algorithm.
1: procedure decode(`, k)
2: Â← ∅
3: for p = 1, ..., k do
4: `p ← get-subseqence(`, p)
5: Â← decode-one(`p, Â)

6: return Â

7: procedure get-subseqence(`, p)
8: `p ← (λ : i = 1, ..., |`|)
9: for i = 1, ..., |`| do

10: (b0i , ..., b
6k
i)← `i

11: `pi ← (b
6(p−1)
i , ..., b6p−1

i)

12: return `p

13: procedure decode-one(`, Â)
14: σR ← [0]; σL ← []
15: for `i := (b0b1b2b3b4b5) ∈ ` do
16: if b5 = 1 ∧ |σL| > 0 ∧ (i→ σd

L) /∈ Â then
17: (σd

L , σ
ω
L)← pop(σL)

18: while σω
L 6= 1 do

19: Â← Â ∪ {(i→ σd
L)}

20: (σd
L , σ

ω
L)← pop(σL)

21: Â← Â ∪ {(i→ σd
L)}

22: if b0 = 1 ∧ |σR| > 0 ∧ (σ>
R → i) /∈ Â then

23: if b1 = 1 then
24: Â← Â ∪ {(pop(σR)→ i)}
25: else
26: Â← Â ∪ {(σ>

R → i)}
27: if b2 = 1 then
28: push(σR, i)

29: if b3 = 1 then
30: push(σL, (i, b

4))

31: return Â

45

Chapter 5

Framework and Experiments

This chapter describes the experimental methodology used to evaluate the performance of our
SL approach against SoTA graph parsers. Following previous studies, we train a neural-based

model on annotated treebanks to predict label sequences as a tagging task. Section 5.1 details the
neural architecture used as the backbone for our parsers. Section 5.2 formalizes the evaluation
metrics commonly used in graph parsing to compare our SL methods with baseline systems. Section
5.3 outlines the specific training configurations for the models and Section 5.4 details the data used
and its properties to run the experiments.

5.1 Neural framework

Our neural framework adheres to the encoder-decoder architecture, extensively applied for tagging
tasks [23, 24, 25, 47]. Figures 5.1 and 5.2 show a visualization of our pipeline at inference and training
time, respectively. For both, the encoder module (green box) contextualizes an input sentence1 W =

(w0, w1, ..., wn) ∈ Vn+1 through recurrent or Transformer-based layers and returns a sequence of
contextualized word embeddings, H = (h0,h1, ...,hn) ∈ R(n+1)×dh . The decoder (blue boxes)
is conformed by two FFNs with a LeakyReLU [85] activation. The first FFN, denoted as FFN` :

Rdh → R|L|, learns the gold labels (`1, ..., `n) by projecting each contextualized embedding hi, for
i = 1, .., n, into the probability distribution space of L. The predicted label ˆ̀i is obtained with the
argmax() operator over FFN`(hi).

Once the predicted label sequence is computed with FFN`, the decoding process is executed to
obtain Â (yellow lines). To assign relationship types to each arc α̂ := (h → d) ∈ Â, the contextu-
alized representations of the words wh and wd are concatenated, building an arc embedding of the
form (hh;hd) and fed to the second FFN, denoted as FFNr : R2dh → R|R|. The output, FFNr(hh;hd),
represents the probability distribution overR for the relationship type of the arc (h→ d). By pass-
ing each arc embedding through FFNr , the result is a labeled predicted graph (purple lines) that is
evaluated against the original input graph.

At training time, the full neural architecture is optimized via gradient descent with the cross-
entropy loss between (i) the gold and predicted labels and (ii) the gold and predicted relations. To

1 Note that w0 is not a proper token from the original sentence, but an special token (such as the [CLS] token used
in BERT) that represents the root context of the sentence.

46

Encoding
process

Input graph

Gold labels
Encoder

Predicted labels

Loss

Arc embed.

Predicted relations

Input sentence

Encoder

Predicted labels
Decoding

process
Unlabeled graph

Arc embed.

Predicted graph

Loss

Figure 5.1: Neural framework proposed for our SL approach at inference time.

pair each gold relation with a prediction from the model, the real arcs are used instead of decoding
the predicted labels. When using the real arcs to feed arc embeddings to FFNr , it is possible to apply
the cross-entropy loss between the output of FFNr and the real relationship type (Figure 5.2).

Encoding
process

Input graph

Gold labels
Encoder

Predicted labels

Loss

Arc embed.

Predicted relations

Input graph

Encoder

Predicted labels
Decoding

process

Unlabeled graph

Arc embed.

Predicted graph

Loss

Figure 5.2: Neural framework proposed for our SL approach at training time.

5.2 Evaluation metrics

Theperformance of our SL-based graph parser is evaluated by comparing the set of predicted labeled
arcs, Â, with the real set of arcsA. We adopted the evaluation metrics proposed in the SemEval 2015
Task 18 [16], which include the unlabeled (and labeled) precision, recall, f-score and exact match.

Let UTP (unlabeled true positives) be the number of correctly predicted unlabeled arcs (arcs of
Â that appear in A without considering the relationship label r) and TP (true positives) be the the
number of correctly predicted labeled arcs. Formally,

UTP = |{(h r′→ d) ∈ Â : (h
r→ d) ∈ Â, r′ ∈ R}|, TP = |A ∩ Â| (5.1)

47

The unlabeled precision (UP), recall (UR), f-score (UF) and exact match (UM) are defined in Equa-
tion 5.2. The UP and UR evaluate the ratio of correct unlabeled arcs against the number of predicted
arcs and the number of real arcs. The UF leverages the harmonic mean between UP and UR. The
exact match assess whether all the arcs predicted are in A, meaning that the full graph is correctly
predicted without considering the relationship types.

UP =
UTP
|Â|

, UR =
UTP
|A|

, UF = 2
UP · UR
UP+ UR

, UM = I(UTP = |A| = |Â|) (5.2)

The labeled metrics are displayed in Equation 5.3. Each labeled metric is an analogy of its unlabeled
counterpart using the TP value instead of UTP. In the case of the exact match, the LM takes value 1
if all the predicted graph is exactly the same as the input graph.

LP =
TP
|Â|

, LR =
TP
|Â|

, LF = 2
LP · LR
LP+ LR

, LM = I(Â = A) (5.3)

5.3 Training configuration

In order to accurately assess the performance of our SL approaches, we conducted multiple ex-
periments varying the model configuration and the encoder architecture: training from scratch a
4-layered BiLSTM (Section 2.1.2) and finetuning XLM-RoBERTaL [72] or XLNetL [54] (Section 2.1.4)
for English treebanks. The hidden dimension of the BiLSTM is fixed to dh = 400 and for the pre-
trained LLMs the original embedding size is maintained (dh = 1024). For the bracketing, 4k-bit
and 6k-bit encodings, we also varied the hyperparameter k, testing different values to increase the
coverage of each linearization. For the bracketing encoding, k denotes the number of relaxed-planes
supported, so increasing its value allows recovering more complex graphs (Section 3.2). We con-
ducted experiments for the bracketing encoding with k = 2 and k = 3. For the 4k-bit and 6k-bit
linearizations, the hyperparemeter k modulates the number of subsets in which A is distributed
(Sections 4.1 and 4.2), thus larger values ensure recovering more arcs, so we tested k for {2, 3, 4}.

All models were optimized with AdamW [86] (the learning rate was fixed to η = 10−3 when
the BiLSTM was set as encoder or η = 10−5 when an LLM was finetuned) during 200 epochs with
early stopping over the development set.

Baseline We selected the biaffine parser [17] (Section 2.2.1) to compare the performance of our
graph linearizations against the SoTA in graph parsing. Originally, the biaffine parser uses a BiLSTM-
based encoder, but for a fair comparison, we report results with XLM-RoBERTa and XLNet as en-
coder. We relied on SuPar 1.14 implementation to train again the biaffine parser with the same
training configuration as our SL-based models.

5.4 Datasets

We train ourmodels on the SemEval 2015 Task 18 (SDP) [16] and IWPT 2021 Shared Task (IWPT) [30]
datasets. As specified in Section 1.3, both datasets are open-source and contain multilingual graph

48

https://github.com/yzhangcs/parser

annotations in the SDP and Enhanced CoNLL formats. In case of the SDP dataset, its annotations
are constrained to acyclic graphs.

Tables 5.1 and 5.2 show some statistics of the collected treebanks. See that the SDP corpus (Table
5.1) does not contain cycles. Almost the 99% of the graphs are have 1 or 2 relaxed planes, with makes
the bracketing encoding with k = 2 sufficient to cover almost all graphs. The PSD annotations are
the ones with more relaxed 3-planar graphs. The Chinese treebank seems to have denser graphs,
since the number of heads per node is greater than one and the number of arcs per graph surpasses
the average length.

The statistics of the IWPT corpus (Table 5.2) show that all treebanks contain a considerable
amount of graphs with at least one cycle. Key characteristics such as the average length and the av-
erage number of relaxed planes per graph varies between languages. The Arabic treebanks contains
the longer sequences. Lituanian has the higher number of relaxed planes per graph. The 96% of the
graphs are covered with 1 or 2 relaxed planes. In general terms, the graphs from the IWPT dataset
are denser than the ones from the SDP corpus, since in almost all cases, the number of heads per
node is greater than 1.

#sents n #cycles #relaxed-planes h/n d/n #arcs #relaxed-planes #roots1 2 3 4 5

D
M

en

33964 22.52 0 86.28 13.68 0.05 0.00 0.00 0.78 0.74 17.68 1.14 1.00
1692 22.28 0 86.94 13.06 0.00 0.00 0.00 0.79 0.74 17.55 1.13 1.00
1410 22.66 0 84.11 15.89 0.00 0.00 0.00 0.77 0.73 17.60 1.16 1.00
1849 17.08 0 88.64 11.20 0.16 0.00 0.00 0.75 0.70 13.11 1.12 0.99

PA
S e

n

33964 22.52 0 83.70 16.20 0.10 0.00 0.00 1.01 0.95 22.96 1.16 1.00
1692 22.28 0 86.52 13.42 0.06 0.00 0.00 1.00 0.95 22.53 1.14 1.00
1410 22.66 0 82.91 17.02 0.07 0.00 0.00 1.01 0.96 23.15 1.17 1.00
1849 17.08 0 83.02 16.77 0.22 0.00 0.00 0.99 0.92 17.35 1.17 1.00

PS
D

en

33964 22.52 0 77.51 20.99 1.44 0.05 0.01 0.70 0.66 15.80 1.24 1.13
1692 22.28 0 76.71 22.16 0.95 0.12 0.06 0.70 0.66 15.74 1.25 1.12
1410 22.66 0 77.38 21.21 1.28 0.14 0.00 0.69 0.66 15.79 1.24 1.14
1849 17.08 0 81.23 17.79 0.87 0.11 0.00 0.67 0.62 11.57 1.20 1.26

PS
D

cs

40047 23.45 0 74.22 24.04 1.66 0.08 0.00 0.77 0.73 18.34 1.28 1.23
2010 22.99 0 75.32 23.33 1.24 0.05 0.05 0.78 0.73 17.97 1.26 1.18
1670 22.99 0 73.35 24.67 1.98 0.00 0.00 0.76 0.72 17.71 1.29 1.20
5226 16.82 0 78.66 19.15 2.01 0.17 0.00 0.78 0.71 13.19 1.24 1.28

PA
S z

h 25896 22.43 0 75.60 24.12 0.28 0.00 0.00 1.02 0.94 22.95 1.25 1.00
2440 27.95 0 73.16 26.60 0.25 0.00 0.00 1.02 0.95 28.60 1.27 1.00
8976 23.89 0 75.12 24.64 0.23 0.00 0.00 1.02 0.95 24.47 1.25 1.00
8976 23.89 0 75.12 24.64 0.23 0.00 0.00 1.02 0.95 24.47 1.25 1.00

Table 5.1: Treebank statistics for the SDP dataset. Number of sentences (#sents), sentences with
cycles (#cycles), percentage of graph with k-relaxed planes (#planes, average sentence length (n),
average number of heads and dependents per node (h/n and d/n respectively), average number of
arcs (#arcs), planes (#relaxed-planes) and roots (#roots) per graph.

49

#sents n #cycles #relaxed-planes h/n d/n #arcs #relaxed-planes #roots1 2 3 4 5

ar

6075 36.85 1386 65.32 32.49 1.86 0.30 0.02 1.05 1.00 39.22 1.37 1.08
909 33.27 225 69.97 28.49 1.32 0.22 0.00 1.05 1.00 35.24 1.32 1.06
680 41.56 178 64.26 33.82 1.76 0.15 0.00 1.05 1.00 44.11 1.38 1.06

bg

8907 13.96 1111 90.14 9.68 0.18 0.00 0.00 1.02 0.93 14.38 1.10 1.00
1115 14.43 141 89.69 10.22 0.09 0.00 0.00 1.02 0.94 14.86 1.10 1.00
1116 14.09 136 90.59 9.41 0.00 0.00 0.00 1.02 0.93 14.49 1.09 1.00

cs

102133 17.42 16451 65.04 33.58 1.28 0.09 0.01 1.05 0.97 18.66 1.36 1.23
11182 16.72 1739 66.28 32.67 1.00 0.04 0.01 1.05 0.96 17.85 1.35 1.23
13067 16.84 2114 65.92 33.14 0.88 0.05 0.01 1.05 0.96 17.93 1.35 1.23

en

18213 16.85 1533 81.29 18.52 0.19 0.00 0.00 1.04 0.93 17.69 1.19 1.00
2845 14.52 180 83.69 16.10 0.21 0.00 0.00 1.03 0.91 15.25 1.17 1.00
3972 15.69 355 84.39 15.46 0.15 0.00 0.00 1.03 0.92 16.42 1.16 1.00

et

27470 13.79 2560 95.27 4.72 0.01 0.00 0.00 1.01 0.91 13.92 1.05 1.03
3868 13.85 382 92.63 7.37 0.00 0.00 0.00 1.01 0.91 14.04 1.07 1.07
4127 14.94 377 91.03 8.92 0.05 0.00 0.00 1.01 0.91 15.16 1.09 1.08

fi

12217 13.33 1855 78.90 19.19 1.77 0.12 0.02 1.06 0.96 14.41 1.23 1.00
1364 13.42 203 78.30 20.01 1.32 0.29 0.07 1.06 0.96 14.57 1.24 1.00
2555 14.44 414 84.54 14.21 1.17 0.08 0.00 1.05 0.96 15.24 1.17 1.00

fr

2231 22.64 546 80.55 19.23 0.18 0.04 0.00 1.04 0.95 23.77 1.20 1.00
412 24.28 112 80.83 18.93 0.24 0.00 0.00 1.04 0.97 25.51 1.19 1.00
2745 12.45 193 94.72 5.21 0.07 0.00 0.00 1.02 0.92 12.76 1.05 1.00

it

13121 21.04 2245 85.73 14.17 0.10 0.00 0.00 1.03 0.96 21.95 1.14 1.00
564 21.11 104 87.06 12.94 0.00 0.00 0.00 1.03 0.96 21.94 1.13 1.00
482 21.61 88 86.31 13.49 0.21 0.00 0.00 1.03 0.96 22.49 1.14 1.00

lt

2341 20.35 217 51.82 44.55 3.03 0.47 0.13 1.10 1.01 22.74 1.53 1.37
617 18.74 69 58.67 39.87 1.46 0.00 0.00 1.07 0.99 20.37 1.43 1.29
684 15.86 42 53.22 44.01 2.34 0.44 0.00 1.08 0.99 17.49 1.50 1.36

lv

10156 16.50 1526 73.50 24.25 2.10 0.13 0.01 1.06 0.97 17.76 1.29 0.99
1664 15.60 194 75.12 22.84 1.86 0.18 0.00 1.04 0.95 16.68 1.27 0.98
1823 14.48 207 78.72 19.69 1.37 0.16 0.05 1.02 0.93 15.32 1.23 0.96

nl

18051 14.46 1814 84.24 15.17 0.58 0.01 0.00 1.02 0.92 14.95 1.16 1.00
1394 16.45 122 84.86 14.49 0.65 0.00 0.00 1.03 0.93 17.02 1.16 1.00
1471 15.37 107 82.39 17.06 0.54 0.00 0.00 1.03 0.91 16.01 1.18 1.00

pl

31496 12.27 1933 79.65 19.50 0.80 0.04 0.00 1.04 0.94 13.04 1.21 1.11
3960 12.07 256 80.15 19.09 0.76 0.00 0.00 1.04 0.93 12.82 1.21 1.11
4942 13.18 382 77.22 22.04 0.67 0.08 0.00 1.05 0.95 14.05 1.24 1.13

ru

48814 17.83 3979 67.29 32.30 0.41 0.00 0.00 1.04 0.97 18.80 1.33 1.23
6584 18.00 511 65.31 34.23 0.44 0.02 0.00 1.05 0.97 19.04 1.35 1.28
6491 18.08 507 65.23 34.42 0.35 0.00 0.00 1.05 0.97 19.07 1.35 1.25

sk

8483 9.50 469 78.52 21.10 0.38 0.00 0.00 1.04 0.91 9.96 1.22 1.19
1060 12.01 105 81.13 18.40 0.47 0.00 0.00 1.05 0.93 12.70 1.19 1.14
1061 12.00 117 77.38 22.34 0.28 0.00 0.00 1.05 0.93 12.79 1.23 1.19

sv

4303 15.49 631 85.99 13.97 0.05 0.00 0.00 1.05 0.95 16.42 1.14 1.00
504 19.44 86 76.19 23.61 0.20 0.00 0.00 1.06 0.99 20.85 1.24 1.00
2219 17.78 425 84.68 15.19 0.14 0.00 0.00 1.05 0.98 18.81 1.15 1.00

ta

400 15.82 1 97.75 2.25 0.00 0.00 0.00 1.02 0.95 16.19 1.02 1.00
80 15.79 22 98.75 1.25 0.00 0.00 0.00 1.05 0.97 16.68 1.01 1.01
120 16.57 38 98.33 1.67 0.00 0.00 0.00 1.03 0.96 17.29 1.02 1.00

uk

5496 16.81 746 63.36 35.94 0.69 0.02 0.00 1.06 0.97 18.10 1.37 1.25
672 18.71 143 61.61 37.80 0.60 0.00 0.00 1.07 0.99 20.20 1.39 1.20
892 19.19 121 65.25 33.86 0.90 0.00 0.00 1.05 0.96 20.61 1.36 1.17

Table 5.2: Treebank statistics for the IWPT dataset. Same notation as in Table 5.1

50

Chapter 6

Results

This chapter presents the results of our experimental study, evaluating the proposed graph lin-
earizations in terms of performance against the biaffine baseline and analyzing the coverage

of the encodings (Section 6.1); and assesses the impact of each linearization method on the system’s
speed (Section 6.2)

6.1 Performance evaluation

Tables 6.1, 6.2 and 6.3 present the UF and LF score in each treebank using XLM-RoBERTa (or XLNet
for English treebanks) as encoder. For the SDP dataset, we report results on both the in-distribution
and out-of-distribution test sets (Section 1.3), which provide a better reference for the parser’s per-
formance across different data distributions. The coverage is also reported to provide a reference
of the amount of arcs that each graph linearization is able to reconstruct. In this context, the cov-
erage is defined as the subset of arcs in a graph that are recoverable when applying the decoding
function to the sequence of labels produced during encoding. For instance, when the bracketing
encoding with k = 1 is applied to a relaxed 2-planar graph, the subset of recoverable arcs is not
the original set of arcs, since crossing arcs in the same direction are skipped. In Tables 6.1-6.3, the
coverage is measured in terms of f-score (CF) by computing as the unlabeled f-score between A

and the encoding-decoding reconstruction, δ(ε(A)), with an specific linearization. See that, for all
treebanks, the CF increases with k for the bracketing (B), and bit (B4 and B6) encodings, since more
relaxed-planes or arc subsets are supported.

Table 6.1 shows that our SL parsers outperform the baseline in 2 out of 5 treebanks in terms of UF
score and in all treebanks in terms of LF score for the in-distribution sets. For the out-of-distribution
sets (Table 6.2), the biaffine system only outperforms our linearizations in the Czech treebank in
terms of the UF score. Table 6.3 breaks down the performance in all treebanks of the IWPT dataset.
The SL approach outperforms biaffine in both UF and LF scores for 3 out of 17 treebanks (Bulgarian,
Dutch, and Slovak) and in one of these metrics for another 3 treebanks (French, Italian, and Tamil).
Overall, the denser graphs in the IWPT dataset negatively impact the SL-based approaches, as higher
values of k are required to cover more graphs or a larger number of labels is generated.

The bracketing and 6k-bit encoding stand out as the best performing SL approaches. Only in the
Polish treebank, the 4k-bit encoding achieves the highest UF and LF scores, though it still remains

51

DMen PASen PSDen PSDcs PASzh
UF LF CF UF LF CF UF LF CF UF LF CF UF LF CF

A 88.66 87.94 100 86.66 85.29 100 89.56 79.19 100 90.04 85.33 100 76.20 74.02 100
R 91.92 91.23 100 90.29 88.86 100 89.74 79.39 100 89.60 84.92 100 78.89 76.66 100
B2 95.16 94.46 99.95 95.82 94.31 99.98 92.31 81.80 99.73 92.75 88.14 99.77 87.74 85.39 99.97
B3 94.63 93.75 100 95.73 94.21 100 92.33 81.65 99.98 92.74 88.02 99.99 87.78 85.50 100
B42 86.45 85.84 90.45 79.84 78.82 82.46 92.87 81.96 99.58 92.88 88.24 99.53 77.54 75.53 87.34
B43 92.64 91.64 97.64 89.65 88.23 92.89 92.68 81.99 99.95 93.11 88.33 99.96 83.70 81.46 94.20
B44 95.07 94.35 99.56 93.79 92.35 97.27 92.80 82.00 100 93.39 88.79 99.99 86.19 83.91 97.12
B62 91.44 90.87 96.09 87.70 86.64 91.28 92.66 81.88 99.69 93.37 88.54 99.72 81.92 79.87 92.58
B63 94.90 94.15 99.44 93.58 92.16 97.38 92.61 82.13 99.96 93.44 88.61 99.97 85.72 83.54 96.98
B64 95.23 94.52 99.95 95.32 93.87 99.27 92.74 81.89 100 93.30 88.45 99.99 87.06 84.77 98.61
DM 95.07 94.31 100 95.69 94.12 100 92.95 82.08 100 93.65 88.73 100 87.80 85.49 100

Table 6.1: SDP performance on the in-distribution set. First column denotes the decoder used:
absolute (A), relative (R), bracketing (B), 4k-bit (B4) and 6k-bit (B6) encoding. The subscript in
B, B4 and B6 denote the value of the hyperparameter k. The biaffine (DM) performance is displayed
in the last row. Best SL-based parser is highlighted in bold and the best overall parser (baseline
included) is underlined. The coverage of each encoding is displayed in the CF column. Languages
are specified with the ISO-639 code.

DMen PASen PSDen PSDcs

UF LF CF UF LF CF UF LF CF UF LF CF
A 87.47 86.35 100 86.22 84.62 100 88.55 78.24 100 86.92 71.78 100
R 89.94 88.90 100 90.14 88.51 100 88.47 78.26 100 86.43 71.43 100
B2 92.56 91.54 99.95 94.82 93.18 99.98 91.45 81.38 99.73 89.69 74.89 99.77
B3 91.92 90.77 100.00 94.77 93.12 100 91.60 81.48 99.98 89.91 75.15 99.99
B42 85.54 84.71 90.45 81.37 80.18 82.46 91.44 80.97 99.58 90.11 75.22 99.53
B43 89.97 88.56 97.64 89.71 88.02 92.89 91.90 81.41 99.95 89.97 75.25 99.96
B44 92.41 91.28 99.56 93.03 91.40 97.27 91.73 81.34 100.00 90.13 75.19 99.99
B62 89.07 88.22 96.09 88.31 87.01 91.28 91.78 81.35 99.69 90.44 75.72 99.72
B63 92.05 91.05 99.44 93.27 91.70 97.38 91.88 81.53 99.96 90.40 75.61 99.97
B64 92.71 91.67 99.95 94.34 92.64 99.27 91.95 81.61 100.00 90.34 75.56 99.99
DM 92.52 91.43 100 94.13 92.39 100 91.81 81.27 100 90.63 75.44 100

Table 6.2: SDP performance on the out-of-distribution set. Same notation as in Table 6.1.

one point below biaffine. In general terms, the bracketing and bit encodings outperform the posi-
tional encodings, likely due to their lower number of unique generated labels (|L|), which makes
them easier to learn for a neural model. Positional encodings heavily rely on the global positional
context and produce a higher number of unique labels, which is more challenging for the network to
learn, and can lead to a worse performance such as the one displayed for the IWPT English treebank.

6.2 Speed analysis

In order to study the impact of SL approaches in terms of efficiency, we computed the Pareto front
of the performance (UF score) against inference speed (in tokens per second) of each configuration.
Figures 6.1 and 6.2 show the comparison in a selected subset of treebanks. Figure 6.1a shows the
Pareto front for the DMen in-distribution test set. The subset of optimal solutions is highlighted in
bold: B64 and B2 with XLNet, Biaf and B3 with XLM and B3 and B2 with BiLSTMs. These

52

https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes

ar bg cs nl en et
UF LF CF UF LF CF UF LF CF UF LF CF UF LF CF UF LF CF

A 75.00 69.17 100 89.60 85.75 100 92.01 88.98 100 90.15 86.57 100 35.52 33.00 100 66.63 61.06 100
R 82.06 75.58 100 89.86 86.60 100 92.68 89.89 100 89.33 85.92 100 89.23 86.31 100 85.86 81.93 100
B2 87.85 80.98 99.82 95.07 92.23 99.98 93.55 90.78 99.76 93.05 90.14 99.85 91.16 88.19 99.94 88.89 85.25 99.99
B3 87.82 81.22 99.94 94.91 91.96 100 93.63 90.90 99.98 92.94 90.05 100 90.86 87.88 100 89.06 85.43 100
B42 87.84 81.21 99.77 95.16 92.16 99.86 93.68 90.93 99.69 93.50 90.69 99.89 91.39 88.45 99.80 88.85 85.18 99.98
B43 87.81 81.11 99.90 95.38 92.32 99.96 93.91 91.11 99.94 93.37 90.39 99.98 91.38 88.18 99.97 89.24 85.47 100
B44 88.09 81.27 99.94 95.46 92.51 99.98 93.86 91.08 99.98 93.50 90.50 99.99 91.30 88.37 99.99 88.91 85.24 100
B62 87.68 80.97 99.85 95.56 92.65 99.89 94.01 91.35 99.82 93.63 90.81 99.92 91.46 88.53 99.87 89.31 85.70 99.99
B63 88.10 81.37 99.93 95.42 92.60 99.97 93.94 91.21 99.96 93.53 90.55 99.99 91.38 88.43 99.97 89.17 85.46 100
B64 88.33 81.60 99.95 95.25 92.48 99.98 93.85 91.11 99.98 93.82 90.81 99.99 91.50 88.48 99.99 89.14 85.51 100
DM 89.72 82.69 100 95.56 92.47 100 94.76 91.99 100 93.49 90.18 100 92.44 89.29 100 90.87 87.69 100

fi fr it lv lt pl
UF LF CF UF LF CF UF LF CF UF LF CF UF LF CF UF LF CF

A 84.52 80.97 100 80.79 76.58 100 88.68 86.12 100 81.72 77.42 100 64.19 58.55 100 91.75 87.13 100
R 85.90 82.34 100 83.06 78.66 100 89.25 87.16 100 84.64 80.63 100 72.85 66.42 100 90.96 86.47 100
B2 91.19 88.16 99.60 91.06 87.60 99.97 94.26 92.21 99.96 89.94 86.48 99.49 83.61 77.49 99.41 93.19 88.80 99.70
B3 91.20 88.13 99.94 90.59 86.65 100 94.42 92.47 100 89.85 86.42 99.95 83.85 78.03 99.87 93.50 89.09 99.98
B42 91.70 88.60 99.60 92.37 88.64 99.87 94.70 92.69 99.83 90.55 87.22 99.44 84.96 78.82 99.46 93.87 89.42 99.70
B43 91.58 88.41 99.87 92.60 88.88 99.98 94.64 92.70 99.98 90.43 87.11 99.82 85.03 78.74 99.83 93.95 89.52 99.93
B44 91.64 88.56 99.94 92.61 88.47 100 94.61 92.58 100 90.79 87.40 99.93 84.45 78.36 99.92 94.07 89.57 99.97
B62 92.02 89.03 99.69 92.60 88.82 99.93 94.70 92.72 99.94 90.27 87.06 99.57 85.09 79.50 99.59 93.84 89.39 99.78
B63 91.64 88.71 99.89 91.66 88.06 99.99 94.67 92.66 99.99 90.86 87.55 99.84 84.96 79.00 99.90 93.88 89.51 99.95
B64 92.03 89.07 99.95 92.96 89.80 100 94.29 92.31 100 90.86 87.56 99.94 85.27 79.49 99.96 93.95 89.54 99.98
DM 93.54 90.93 100 93.71 89.77 100 94.97 92.65 100 93.01 89.97 100 89.16 83.38 100 95.40 91.05 100

ru sk sv ta uk
UF LF CF UF LF CF UF LF CF UF LF CF UF LF CF

A 93.28 91.45 100 83.53 79.39 100 77.50 73.48 100 34.22 27.27 100 70.49 67.21 100
R 93.08 91.33 100 86.79 82.59 100 81.79 78.05 100 64.69 53.69 100 81.92 78.74 100
B2 94.73 93.09 99.93 93.31 90.15 99.79 88.57 84.90 99.92 73.62 62.02 100 90.32 87.65 99.77
B3 94.75 93.13 100 93.61 90.41 99.96 88.75 85.10 100 73.62 62.02 100 90.35 87.75 99.99
B42 94.69 93.09 99.90 93.79 90.41 99.72 90.18 86.69 99.74 75.81 63.36 99.95 91.10 88.31 99.75
B43 94.79 93.19 99.99 94.08 90.51 99.94 90.41 86.62 99.97 76.01 64.54 100 91.28 88.54 99.95
B44 94.78 93.20 100 93.85 90.32 99.99 89.97 86.37 99.99 76.01 64.54 100 90.93 88.24 99.99
B62 94.94 93.39 99.94 94.06 90.86 99.85 90.32 86.87 99.86 76.16 63.48 100 91.38 88.97 99.86
B63 95.03 93.52 99.99 94.26 90.94 99.97 90.25 86.85 99.98 76.16 63.48 100 91.41 88.90 99.97
B64 95.04 93.51 100 93.89 90.73 99.99 90.03 86.53 100 76.16 63.48 100 91.16 88.66 99.99
DM 95.82 94.24 100 94.22 90.61 100 91.28 87.46 100 76.08 65.74 100 93.38 90.68 100

Table 6.3: IWPT performance on the test set.

configurations represent the best trade-off between performance and speed. There is a substantial
difference between encoders: in all figures the BiLSTMs are considerably faster than the XLM
and XLNet encoders, but this comes at the cost of lower UF scores. XLNet is also consistently
slower than XLM, probably due to the denser representations of the Transformer-XL architecture
of XLNet against the vanilla Transformer of the XLM.

When comparing encodings in a single encoder configuration we see that positional encodings
are the fastest approach, followed by the bracketing and 6k-bit encoding and lastly the 4k-bit en-
coding. Positional encodings are faster since their decoding implementation is easily parallelizable

53

– each label independently creates a subset of Â –, while the other encodings rely on a transition-
based system to decode the predicted arcs. In the case of the 4k-bit encoding, the decoding process
is the slowest one since it produces more connections that are passed through the FFNr and requires
an extra postprocessing step to remove the predicted artificial arcs. The bracketing and 6k-bit ap-
proaches seem to be the best trade-off between performance and efficiency, specially in the IWPT
treebanks, where biaffine suffers in terms of speed due to the larger number of arcs per graph (see
Table 5.2, #arcs).

In the selected treebanks, biaffine is excluded from the set of optimal solutions in the DMen and
PASen in-distribution sets and the IWPTsk and IWPTta test sets. The bracketing encoding with XLMs
or XLNet is only excluded PASzh and IWPTsk, while the 6k-bit encoding is excluded in the PSDcs

and PASzh. The SL approaches of the Pareto front are always faster than biaffine and in the DMen,
PASen, PSDen, IWPTsk and IWPTta they reach a superior or paired performance to the baseline.

54

(a) DMen in-distribution set.

B4₄

B4₃

B4₂

B4₄

A

R

B4₂

B6₂

A

B6₄

B6₂

B6₃

R

R

Biaf

6230 6780 7340 7890 11880 17340
75

80

85

90

95

pareto
XLM
XLNet
BiLSTM
A/R
B
B4
B6
Biaf

token/s

U
F

Biaf B6₄

B6₃
B4₃

B6₂

B6₄
B6₃

B₂
B₃

B₂

B₃

B₃
B₂B4₄

B4₃

(b) PASen in-distribution set.

B4₄

B4₃

B4₂

B6₄

B6₃

B6₂
B4₃

A

R

B6₄

B4₂

B6₂

B6₃

A

B4₄

B4₃
B6₂

B₃

R

R

6150 6700 7250 7800 10970 15250

75

80

85

90

95

token/s

U
F

B4₄

Biaf Biaf

B₂ B₃ B₂

B6₄

B6₃

B₂
B₃

(c) PSDen in-distribution set.

B4₄ B4₃

R
A

R

B₃

A

B6₄

B₂

R

6370 6940 7520 8100 12200 17810
76

78

80

82

84

86

88

90

92

94

token/s

U
F

B4₄

B4₃
B4₂

B6₃ B6₂

B₂
B₃

B6₂B6₃

B6₄B₂
B4₂

Biaf

B₃

B6₃B6₄

B4₃B6₂B4₄

B4₂Biaf

(d) PSDcs in-distribution set.

B4₄ B4₃

R

B4₄
B4₃

B4₂

B6₃

R

Biaf

6230 6590 6950 7310 12040 18640

75

80

85

90

95

token/s

U
F

B₂
B4₂

B6₃
B6₂

B6₄

B6₄

B6₂

B₃

B₃

B₂

(e) PASzh in-distribution set.

B4₄
B4₃

B4₂

B6₄

B4₄
B4₃
B4₂

B6₄
B6₃

B6₂

R
A

B₂ B₃

R

A

Biaf

5780 6020 6270 6520 10250 15460

40

50

60

70

80

90

token/s

U
F

B6₃

B6₂

B₂
B₃

Figure 6.1: Pareto front of performance (UF) against inference speed (tokens per second) for the SDP
in-distribution sets. For better visualization, the legend in Figure 6.1a is shared between the rest of
them (Figure 6.1b-6.1e). The color indicates the encoding: absolute (A) and relative (R) in yellow,
bracketing (B) in green, 4k-bit (B4) in purple, 6k-bit (B6) in blue and biaffine (Biaf) in red;
and the shape indicates the encoder: BiLSTM , XLM , XLNet . The Pareto points are displayed
with dashed lines and bold italics. Note that the horizontal axis is not linear: it has been scaled to
better fit the BiLSTM points.

55

(a) IWPTar test set.

B4₄ B4₃B4₂

A B4₄

B6₂

R

A

Biaf

4690 5090 5500 5910 9620 14750
45

50

55

60

65

70

75

80

85

90

token/s

U
F

B6₄B6₃

B6₂
B₂

B₃

B6₄

B6₃
B4₃

B4₂

B₃
B₂
R

(b) IWPTfi test set.

B4₄ B4₃

A

B4₄ B4₂

R

R

A

Biaf

5100 5660 6230 6800 9880 14050

40

50

60

70

80

90

token/s
U
F

B4₂

B6₄

B6₃B₂

B₂

B₃

B4₃ B₃
B6₃

B6₂

B6₂B6₄

(c) IWPTfr test set.

B4₄

B4₃

B4₂ B6₃

A

B4₃

B4₄

B₂ B₃

R B6₃

R

A

Biaf

6300 6770 7240 7720 10060 13200

55

60

65

70

75

80

85

90

95

token/s

U
F

B6₄

B6₂

B₂B4₂
B₃
B6₂B6₄

(d) IWPTsk test set.

B4₄ B4₃ B4₂

A

B4₄
B6₃

B₃

R

B₂

Biaf

4390 4610 4840 5070 8500 13290

60

65

70

75

80

85

90

95

token/s

U
F

B₃
B₂

B6₄ B6₃B6₂

B4₃

B4₂ R
B6₄

B6₂

(e) IWPTta test set.

B6₂
B4₄

R

A

B4₄
B6₃

R

A

Biaf

1800 2670 3540 4410 8190 13220
30

40

50

60

70

80

token/s

U
F

B₃ B₂B4₃B4₂
B6₄
B6₂

B4₃

B4₂

B6₄

B₂ B₃

B6₃

Figure 6.2: Pareto front of performance (UF) against inference speed (tokens per second) for the
IWPT test sets. Same notation and legend as in Figure 6.1.

56

Chapter 7

Conclusion

This work introduces a novel approach to graph parsing by formulating it as a sequence-labeling
task. Our approach aims to provide a simpler and more efficient alternative to traditional

methods [17, 20, 71] while maintaining competitive accuracy. To this end, we proposed two families
of SL-based graph linearizations: unbounded and bounded encodings.

Unbounded linearizations (Chapter 3) offer a straightforward representation of graph structures
but do not constrain the label set, which may grow dynamically with the length or density of the
graph. We introduced two variants within this category: the positional encoding, which comes
in absolute and relative variants, and the bracketing encoding, which sequentially encodes graph
structures based on their hierarchical dependencies. While these methods preserve expressiveness,
their lack of a fixed label set poses challenges in scalability and implementation. To address these
limitations, we designed bounded linearizations (Chapter 4) that restrict the number of possible
labels. Specifically, we introduced the 4k-bit and 6k-bit encodings, where the hyperparameter k
controls the coverage of the representation. For each of these encodings, we formally defined the
encoding and decoding functions and provided detailed illustrative examples, demonstrating their
theoretical soundness and applicability to graph parsing tasks.

To evaluate the effectiveness of our approach, we conducted experiments on two well-known
datasets, the SemEval 2015 Task 18 [16] and IWPT 2021 Shared Task [14] datasets, using a biaffine
parser [17] as baseline. We experimented with various neural encoder architectures, including BiL-
STMs [51], XLM [72] and XLNet [54], to assess the impact of different contextualization strate-
gies. Our empirical results indicate that SL approaches achieve paired performance with the biaffine
parser in the SDP datasets, demonstrating their capability in handling structured linguistic graphs.
In the IWPT datasets, biaffine exhibited a slight advantage in performance, likely due to its explicit
modeling of pairwise relations. However, our efficiency analysis revealed a key advantage of SL-
based methods: they consistently outperformed the biaffine parser in inference speed, making them
highly suitable for real-time or large-scale parsing applications.

Overall, our work demonstrates that sequence-labeling formulations provide an alternative to
traditional graph-based methods in NLP. Although SL methods have been explored for other struc-
tured prediction tasks, their adaptation to graph-based parsing is unprecedented. This highlights
the potential of SL-based methods to redefine graph processing by offering a more computationally
efficient alternative to traditional approaches.

57

Appendices

58

Glossary

Bounded A or encoding is said to be bounded when the set of labels L is fixed and it does not
depend of the input structure. 2, 3, 5, 19, 20, 30

Coverage Measure of the amount of arcs that are recovered from the original set A after the en-
coding and decoding transformation. It assesses the similarity betweenA and δ(ε(A).. 20, 27,
51, 52

Decoding (δ) Surjective function that maps a sequence of n labels into the original set of arcs A.
3, 17, 19–21, 26, 27, 30, 31, 51, 59, 62

Deductive system Formal system consisting of a set of axioms and inference rules that define
how new statements (theorems) can be derived from given premises. In this work we denote

the inference rules as
γ1 · · · γt−1

γt+1
(γt), where γ1, ..., γt are the set of premises and γt+1 is the

conclusion.. 23

Embedding A dense vector representation of a discrete input (such as words) designed to facilitate
its use in neural architectures. Embeddings can be static [44] (precomputed from a fixed dic-
tionary), contextual [31] (dynamically generated by a sequence model based on surrounding
context), or learnable (optimized during training alongside the target neural model). 7–10, 14

Encoding (ε) Injective function that maps an input set of arcs A of a graph of size n-sized graph
into a sequence of n labels. 3, 17–21, 26, 27, 30, 31, 33, 51, 59, 60, 62

Graph Abstract structure conformed by a set of nodes and a set of arcs. In this work, we assume
that the term graph refers to a labeled directed graph, denoted asG = (W,A), conformed by a
set of ordered nodes, denoted asW = (w1, ..., wn) ∈ V , and a set of arcsA. Each arc (h r→ d)

is defined by its head (h ∈ [0, n]), dependent (d ∈ [1, n]) and label (r ∈ R). The set of arcs
A fulfills that it does not contain cycles of length one and each arc is unique in terms of its
head and dependent position, so (h

r→ d) ∈ A holds that h 6= d and @(h r′→ d) ∈ A such that
r 6= r′. 17, 18, 20, 26, 27, 30, 32, 33, 51, 59

Graph linearization Specific method that compresses the arc information of a n-sized graph as
a sequence of n labels through an encoding function, and performs a inverse operation to
recover the arcs from the sequence of labels through a decoding function.. 2–5, 7, 18, 19, 51

59

Graph Parsing NLP task that aims to extract the paired relationships between the nodes of an
input sentence W = (w1, ..., wn) as a set of arcs A. 1–4, 7, 13, 17–19, 30

Pareto Front In multi-objective optimization problems, stands for a set of solutions that are non-
dominated to each other but are superior to the rest of solutions in the search space [87]. 52,
55, 56

Relaxed-plane Set of arcs with no crossing arcs in the same direction. We say that a set of arcs
A is distributed in relaxed planes if its arcs are distributed in mutually exclusive subsets such
that each subset (a relaxed plane) does not contain crossing arcs in the same direction.. 27, 30,
48, 51

Sequence Labeling NLP paradigm where complex structures built upon an input sequence, de-
noted as (w1, ..., wn) ∈ Vn, are represented as a sequence of labels (`1, ..., `n) ∈ Ln that
matches the size of the input. 2

Unbounded A or encoding is said to be unbounded when the set of labels L is not fixed and might
grow indefinitely depending on the nature of the input structure. 2–4, 19, 20

60

Acronyms

AI Artificial Intelligence. 1, 2, 4

BiLSTM Bidirectional LSTM. 10, 14, 48, 53, 55

DL Deep Learning. 3, 5, 7

FFN Feed Forward Network. 7–10, 14, 17

LLM Large Language Model. 9–11, 13, 14

LSTM Long-Short Term Memory. 9, 10, 61

ML Machine Learning. 8

MLM Masked Language Modeling. 11, 12

NLP Natural Language Processing. 1, 2, 4, 7–13, 17, 57, 60

NLU Natural Language Understanding. 7, 10–12

NSP Next Sentence Prediction. 12

PLM Permutation Language Modeling. 12

RNN Recurrent Neural Network. 9

SL Sequence Labeling. 2–5, 7, 17–19, 46, 48, 51, 52, 54, 57

SoTA State-of-the-art. 2, 3, 5, 9, 10, 12, 13, 15, 46, 48

61

Symbols

δ : Ln → An Decoding function. 19, 20, 51, 59

λ Empty string. 27

An Set of all possible sets of arcs A for n-sized . 19

L Set of possible labels of an encoding. 19, 20, 30, 52, 59, 60

R Set of possible arc labels. 13, 59

V Vocabulary (set of possible words). 13, 19, 59, 60

ε : An → Ln Encoding function. 19, 20, 51, 59

sort Ordering function. When applied to numbers, it arranges a sequence of numbers in ascending
order. When applied to arcs, it sorts a sequence of arcs in ascending order by its leftmost
component (min{h, d}) and rightmost component ((max{h, d}) in case two arcs share the
same leftmost component. For example sort(1 → 2, 5 → 6, 2 → 3, 7 → 1) = (1 → 2, 7 →
1, 2→ 3, 5→ 6). 20

62

Bibliography

[1] X. Wang, R. Wang, C. Shi, G. Song, and Q. Li, “Multi-Component Graph Convolutional Collab-
orative Filtering,” Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[2] J. Wu, X.Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie, “Self-supervised Graph Learning for
Recommendation,” in Proceedings of the 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval. Association for Computing Machinery, 2021.

[3] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and
R. P. Adams, “Convolutional Networks on Graphs for Learning Molecular Fingerprints,” in
Advances in Neural Information Processing Systems. Curran Associates, Inc., 2015.

[4] C. Hetang, H. Xue, C. Le, T. Yue, W. Wang, and Y. He, “Segment Anything Model for Road
Network Graph Extraction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, 2024.

[5] D. Jurafsky and J. H. Martin, Speech and language processing, 2nd ed. Prentice Hall, Pearson
Education International, 2009.

[6] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The Graph Neural
Network Model,” IEEE Transactions on Neural Networks, 2009.

[7] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Net-
works,” in International Conference on Learning Representations (ICLR), 2017.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention
Networks,” in International Conference on Learning Representations, 2018.

[9] Y. Zhang, X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang, “Every Document Owns Its Structure:
Inductive Text Classification via Graph Neural Networks,” in Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics. Association for Computational Lin-
guistics, 2020.

[10] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph Convolutional Encoders
for Syntax-aware Neural Machine Translation,” in Proceedings of the 2017 Conference on Em-

pirical Methods in Natural Language Processing. Association for Computational Linguistics,
2017.

63

https://ojs.aaai.org/index.php/AAAI/article/view/6094
https://ojs.aaai.org/index.php/AAAI/article/view/6094
https://dl.acm.org/doi/10.1145/3404835.3462862
https://dl.acm.org/doi/10.1145/3404835.3462862
https://papers.nips.cc/paper_files/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://openaccess.thecvf.com/content/CVPR2024W/SG2RL/html/Hetang_Segment_Anything_Model_for_Road_Network_Graph_Extraction_CVPRW_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024W/SG2RL/html/Hetang_Segment_Anything_Model_for_Road_Network_Graph_Extraction_CVPRW_2024_paper.html
http://aleph.bib.uni-mannheim.de/F/?func=find-b&request=285413791&find_code=020&adjacent=N&local_base=MAN01PUBLIC&x=0&y=0
https://ieeexplore.ieee.org/document/4700287
https://ieeexplore.ieee.org/document/4700287
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://aclanthology.org/2020.acl-main.31/
https://aclanthology.org/2020.acl-main.31/
https://aclanthology.org/D17-1209/
https://aclanthology.org/D17-1209/

[11] M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec, “QA-GNN: Reasoning with Lan-
guage Models and Knowledge Graphs forQuestion Answering,” in Proceedings of the 2021 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. Association for Computational Linguistics, 2021.

[12] N. Xue, H. T. Ng, S. Pradhan, R. Prasad, C. Bryant, and A. Rutherford, “The CoNLL-2015 Shared
Task on Shallow Discourse Parsing,” in Proceedings of the Nineteenth Conference on Computa-

tional Natural Language Learning - Shared Task. Association for Computational Linguistics,
2015.

[13] R. Xia and Z. Ding, “Emotion-Cause Pair Extraction: A New Task to Emotion Analysis in
Texts,” in Proceedings of the 57th AnnualMeeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2019.

[14] S. Oepen, K. Sagae, R. Tsarfaty, G. Bouma, D. Seddah, and D. Zeman, Eds., Proceedings of the
17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing

into Enhanced Universal Dependencies (IWPT 2021). Association for Computational Linguistics,
2021.

[15] J. Barnes, L. Oberlaender, E. Troiano, A. Kutuzov, J. Buchmann, R. Agerri, L. Ø vrelid, and
E. Velldal, “SemEval 2022 Task 10: Structured Sentiment Analysis,” in Proceedings of the 16th

International Workshop on Semantic Evaluation (SemEval-2022). Association for Computa-
tional Linguistics, 2022.

[16] S. Oepen, M. Kuhlmann, Y. Miyao, D. Zeman, S. Cinková, D. Flickinger, J. Hajič, and Z. Ure-
šová, “SemEval 2015 Task 18: Broad-Coverage Semantic Dependency Parsing,” in Proceedings

of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Association for
Computational Linguistics, 2015.

[17] T. Dozat and C. D. Manning, “Simpler but More Accurate Semantic Dependency Parsing,” in
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume

2: Short Papers), I. Gurevych and Y. Miyao, Eds. Association for Computational Linguistics,
2018.

[18] X. Wang, J. Huang, and K. Tu, “Second-Order Semantic Dependency Parsing with End-to-End
Neural Networks,” in Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics. Association for Computational Linguistics, 2019.

[19] D. Gildea, G. Satta, and X. Peng, “Cache Transition Systems for Graph Parsing,” Computational

Linguistics, 2018.

[20] D. Fernández-González and C. Gómez-Rodrí guez, “Transition-based Semantic Dependency
Parsing with Pointer Networks,” in Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics. Association for Computational Linguistics, 2020.

64

https://aclanthology.org/2021.naacl-main.45/
https://aclanthology.org/2021.naacl-main.45/
https://aclanthology.org/K15-2001/
https://aclanthology.org/K15-2001/
https://aclanthology.org/P19-1096/
https://aclanthology.org/P19-1096/
https://aclanthology.org/2021.iwpt-1.0/
https://aclanthology.org/2021.iwpt-1.0/
https://aclanthology.org/2021.iwpt-1.0/
https://aclanthology.org/2022.semeval-1.180/
https://aclanthology.org/S15-2153/
https://aclanthology.org/P18-2077/
https://aclanthology.org/P19-1454/
https://aclanthology.org/P19-1454/
https://aclanthology.org/J18-1004/
https://aclanthology.org/2020.acl-main.629/
https://aclanthology.org/2020.acl-main.629/

[21] N. Kitaev and D. Klein, “Tetra-Tagging: Word-Synchronous Parsing with Linear-Time Infer-
ence,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2020.

[22] C. Gómez-Rodrí guez andD. Vilares, “Constituent Parsing as Sequence Labeling,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2018.

[23] M. Strzyz, D. Vilares, and C. Gómez-Rodrí guez, “Viable Dependency Parsing as Sequence La-
beling,” in Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, 2019.

[24] A. Amini, T. Liu, and R. Cotterell, “Hexatagging: Projective Dependency Parsing as Tagging,” in
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume

2: Short Papers). Association for Computational Linguistics, 2023.

[25] C. Gómez-Rodrí guez, D. Roca, and D. Vilares, “4 and 7-bit Labeling for Projective and Non-
Projective Dependency Trees,” in Proceedings of the 2023 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, 2023.

[26] A. Ezquerro, D. Vilares, and C. Gómez-Rodríguez, “Dependency Graph Parsing as Sequence
Labeling,” in Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-

cessing. Association for Computational Linguistics, 2024.

[27] A. Ivanova, S. Oepen, L. Øvrelid, and D. Flickinger, “Who Did What to Whom? A Contrastive
Study of Syntacto-Semantic Dependencies,” in Proceedings of the Sixth Linguistic Annotation

Workshop. Association for Computational Linguistics, 2012.

[28] Y. Miyao, T. Ninomiya, and J. Tsujii, “Corpus-Oriented Grammar Development for Acquiring
a Head-Driven Phrase Structure Grammar from the Penn Treebank,” in Natural Language Pro-

cessing – IJCNLP 2004. Springer Berlin Heidelberg, 2005.

[29] J. Hajič, E. Hajičová, J. Panevová, P. Sgall, O. Bojar, S. Cinková, E. Fučíková, M. Mikulová, P. Pa-
jas, J. Popelka, J. Semecký, J. Šindlerová, J. Štěpánek, J. Toman, Z. Urešová, and Z. Žabokrtský,
“Announcing Prague Czech-English Dependency Treebank 2.0,” in Proceedings of the Eighth In-

ternational Conference on Language Resources and Evaluation (LREC‘12). European Language
Resources Association (ELRA), 2012.

[30] G. Bouma, D. Seddah, and D. Zeman, “From Raw Text to Enhanced Universal Dependencies:
The Parsing Shared Task at IWPT 2021,” in Proceedings of the 17th International Conference

on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal

Dependencies (IWPT 2021). Association for Computational Linguistics, 2021.

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the North

65

https://aclanthology.org/2020.acl-main.557/
https://aclanthology.org/2020.acl-main.557/
https://aclanthology.org/D18-1162/
https://aclanthology.org/N19-1077/
https://aclanthology.org/N19-1077/
https://aclanthology.org/2023.acl-short.124/
https://aclanthology.org/2023.emnlp-main.393/
https://aclanthology.org/2023.emnlp-main.393/
https://aclanthology.org/2024.emnlp-main.659/
https://aclanthology.org/2024.emnlp-main.659/
https://aclanthology.org/W12-3602/
https://aclanthology.org/W12-3602/
https://link.springer.com/chapter/10.1007/978-3-540-30211-7_72
https://link.springer.com/chapter/10.1007/978-3-540-30211-7_72
https://aclanthology.org/L12-1280/
https://aclanthology.org/2021.iwpt-1.15/
https://aclanthology.org/2021.iwpt-1.15/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/

American Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, 2019.

[32] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-
Shot Learners,” inAdvances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds. Curran Associates, Inc., 2020.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time
Object Detection,” 2015.

[35] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 1997.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin, “Attention is All youNeed,” inAdvances in Neural Information Processing Systems. Cur-
ran Associates, Inc., 2017.

[37] F. Rosenblatt, “The Perceptron: A perceiving and recognizing automaton,” Project PARA, Cor-
nell Aeronautical Laboratory, Tech. Rep., 1957.

[38] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks,
1991.

[39] S. ichi Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing,
1993.

[40] A. Vinokourov, N. Cristianini, and J. Shawe-Taylor, “Inferring a Semantic Representation of
Text via Cross-Language Correlation Analysis,” in Advances in Neural Information Processing

Systems, vol. 15. MIT Press, 2002.

[41] P. Rodríguez, M. A. Bautista, J. Gonzàlez, and S. Escalera, “Beyond one-hot encoding: Lower
dimensional target embedding,” Image and Vision Computing, 2018.

[42] F. Morin and Y. Bengio, “Hierarchical Probabilistic Neural Network Language Model,” in Pro-

ceedings of the Tenth InternationalWorkshop on Artificial Intelligence and Statistics, ser. Proceed-
ings of Machine Learning Research, vol. R5. PMLR, 2005, pp. 246–252.

[43] A. Mnih and G. E. Hinton, “A Scalable Hierarchical Distributed Language Model,” in Advances

in Neural Information Processing Systems, vol. 21. Curran Associates, Inc., 2008.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in
Vector Space,” 2013.

66

https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://ieeexplore.ieee.org/document/7780459
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://bibbase.org/network/publication/rosenblatt-theperceptronaperceivingandrecognizingautomaton-1957
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://proceedings.neurips.cc/paper_files/paper/2002/file/d5e2fbef30a4eb668a203060ec8e5eef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/d5e2fbef30a4eb668a203060ec8e5eef-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0262885618300623
https://www.sciencedirect.com/science/article/pii/S0262885618300623
https://proceedings.mlr.press/r5/morin05a.html
https://proceedings.neurips.cc/paper_files/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

[45] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word Representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Association for Computational Linguistics, 2014.

[46] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov, “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” 2020.

[47] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and A. Stent, “Deep Con-
textualized Word Representations,” in Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long Papers). Association for Computational Linguistics, 2018, pp. 2227–2237.

[48] D. E. Rumelhart and J. L. McClelland, Learning Internal Representations by Error Propagation,
1987.

[49] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,”
in Proceedings of the 30th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 28, no. 3. PMLR, 2013.

[50] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9,
no. 8, 1997.

[51] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on

Signal Processing, vol. 45, no. 11, 1997.

[52] T. Dozat and C. D. Manning, “Deep Biaffine Attention for Neural Dependency Parsing,” in
International Conference on Learning Representations, 2017.

[53] B. Bohnet, R. McDonald, G. Simões, D. Andor, E. Pitler, and J. Maynez, “Morphosyntactic Tag-
gingwith aMeta-BiLSTMModel over Context Sensitive Token Encodings,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 2018.

[54] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized
Autoregressive Pretraining for Language Understanding,” in Advances in Neural Information

Processing Systems, vol. 32. Curran Associates, Inc., 2019.

[55] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. (2018) Improving language under-
standing by generative pre-training.

[56] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. (2019) Language Models are
Unsupervised Multitask Learners.

[57] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and
Efficient Foundation Language Models,” 2023.

67

https://aclanthology.org/D14-1162/
https://openreview.net/forum?id=SyxS0T4tvS
https://aclanthology.org/N18-1202/
https://aclanthology.org/N18-1202/
https://ieeexplore.ieee.org/document/6302929
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://ieeexplore.ieee.org/document/650093
https://openreview.net/forum?id=Hk95PK9le
https://aclanthology.org/P18-1246/
https://aclanthology.org/P18-1246/
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971

[58] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-
A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat Models,” 2023.

[59] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sra-
vankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru,
B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell,
C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz,
D. Livshits, D.Wyatt, D. Esiobu, D. Choudhary, D.Mahajan, D. Garcia-Olano, D. Perino, D. Hup-
kes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic, F. Guzmán,
F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai, G. Nail, G. Mialon, G. Pang, G. Cu-
curell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. Kloumann, I. Misra,
I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah,
J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton,
J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Prasad, K. Upasani, K. Plaw-
iak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla, K. Lakhotia,
L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo,
L. Blecher, L. Landzaat, L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kar-
das, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K.
Singh, M. Hassan, N. Goyal, N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang,
O. Duchenne, O. Çelebi, P. Alrassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal,
P. Krishnan, P. S. Koura, P. Xu, Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S.
Cabral, R. Stojnic, R. Raileanu, R. Maheswari, R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro,
R. Sumbaly, R. Taylor, R. Silva, R. Hou, R.Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell,
S. S. Kim, S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S.Wan, S. Bhosale, S. Zhang, S. Van-
denhende, S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan, S. Borodinsky, T. Herman,
T. Fowler, T. Sheasha, T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn,
V. Goswami, V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do, V. Vogeti, V. Albiero,
V. Petrovic, W. Chu, W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang, X. Wang, X. E. Tan,
X. Xia, X. Xie, X. Jia, X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang,
Y. Li, Y. Mao, Z. D. Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Srivastava, A. Jain,
A. Kelsey, A. Shajnfeld, A. Gangidi, A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boe-
senberg, A. Baevski, A. Feinstein, A. Kallet, A. Sangani, A. Teo, A. Yunus, A. Lupu, A. Al-
varado, A. Caples, A. Gu, A. Ho, A. Poulton, A. Ryan, A. Ramchandani, A. Dong, A. Franco,

68

https://arxiv.org/abs/2307.09288

A. Goyal, A. Saraf, A. Chowdhury, A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan, B. James,
B. Maurer, B. Leonhardi, B. Huang, B. Loyd, B. D. Paola, B. Paranjape, B. Liu, B. Wu, B. Ni,
B. Hancock, B. Wasti, B. Spence, B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton,
C. Mejia, C. Liu, C. Wang, C. Kim, C. Zhou, C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichten-
hofer, C. Gao, D. Civin, D. Beaty, D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David,
D. Parikh, D. Liskovich, D. Foss, D. Wang, D. Le, D. Holland, E. Dowling, E. Jamil, E. Mont-
gomery, E. Presani, E. Hahn, E.Wood, E.-T. Le, E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers,
F. Sun, F. Kreuk, F. Tian, F. Kokkinos, F. Ozgenel, F. Caggioni, F. Kanayet, F. Seide, G. M. Florez,
G. Schwarz, G. Badeer, G. Swee, G. Halpern, G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshmi-
narayanan, H. Inan, H. Shojanazeri, H. Zou, H. Wang, H. Zha, H. Habeeb, H. Rudolph, H. Suk,
H. Aspegren, H. Goldman, H. Zhan, I. Damlaj, I. Molybog, I. Tufanov, I. Leontiadis, I.-E. Veliche,
I. Gat, J. Weissman, J. Geboski, J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan,
J. Zhen, J. Reizenstein, J. Teboul, J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard,
J. McPhie, J. Torres, J. Ginsburg, J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand,
K. Matosich, K. Veeraraghavan, K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla,
K. Huang, L. Chen, L. Garg, L. A, L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich,
L. Wehrstedt, M. Khabsa, M. Avalani, M. Bhatt, M. Mankus, M. Hasson, M. Lennie, M. Reso,
M. Groshev, M. Naumov, M. Lathi, M. Keneally, M. Liu, M. L. Seltzer, M. Valko, M. Restrepo,
M. Patel, M. Vyatskov, M. Samvelyan, M. Clark, M.Macey, M.Wang, M. J. Hermoso, M.Metanat,
M. Rastegari, M. Bansal, N. Santhanam, N. Parks, N. White, N. Bawa, N. Singhal, N. Egebo,
N. Usunier, N. Mehta, N. P. Laptev, N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar,
O. Kalinli, P. Kent, P. Parekh, P. Saab, P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dollar,
P. Zvyagina, P. Ratanchandani, P. Yuvraj, Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy,
R. Nayani, R. Mitra, R. Parthasarathy, R. Li, R. Hogan, R. Battey, R. Wang, R. Howes, R. Rinott,
S. Mehta, S. Siby, S. J. Bondu, S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Ma-
hajan, S. Verma, S. Yamamoto, S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha,
S. Patil, S. Shankar, S. Zhang, S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max,
S. Chen, S. Kehoe, S. Satterfield, S. Govindaprasad, S. Gupta, S. Deng, S. Cho, S. Virk, S. Subra-
manian, S. Choudhury, S. Goldman, T. Remez, T. Glaser, T. Best, T. Koehler, T. Robinson, T. Li,
T. Zhang, T. Matthews, T. Chou, T. Shaked, V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan,
V. S. Kumar, V. Mangla, V. Ionescu, V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li, W. Wang,
W. Jiang, W. Bouaziz, W. Constable, X. Tang, X. Wu, X. Wang, X. Wu, X. Gao, Y. Kleinman,
Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li, Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao,
Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait, Z. DeVito, Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and
Z. Ma, “The Llama 3 Herd of Models,” 2024.

[60] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed, “Mistral 7B,” 2023.

[61] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. de las
Casas, E. B. Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample, L. R. Lavaud, L. Saulnier, M.-A.

69

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.06825

Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. L. Scao, T. Gervet, T. Lavril, T.Wang,
T. Lacroix, and W. E. Sayed, “Mixtral of Experts,” 2024.

[62] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-
moyer, “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension,” in Proceedings of the 58th Annual Meeting of the Asso-

ciation for Computational Linguistics. Association for Computational Linguistics, 2020.

[63] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,
“Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,” Journal
of Machine Learning Research, vol. 21, no. 140, 2020.

[64] A. Ezquerro, C. Gómez-Rodríguez, and D. Vilares, “On the Challenges of Fully Incremental
Neural Dependency Parsing,” in Proceedings of the 13th International Joint Conference onNatural
Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics,
2023.

[65] ——, “From Partial to Strictly Incremental Constituent Parsing,” in Proceedings of the 18th Con-

ference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short

Papers). Association for Computational Linguistics, 2024.

[66] W. Foundation. Wikimedia Downloads.

[67] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler, “Aligning
Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading
Books,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015.

[68] A.Wang, A. Singh, J.Michael, F. Hill, O. Levy, and S. Bowman, “GLUE: AMulti-Task Benchmark
and Analysis Platform for Natural Language Understanding,” in Proceedings of the 2018 EMNLP

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Association for
Computational Linguistics, 2018.

[69] J. Zhou and H. Zhao, “Head-Driven Phrase Structure Grammar Parsing on Penn Treebank,” in
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. As-
sociation for Computational Linguistics, 2019.

[70] Y. Zhang, H. Zhou, and Z. Li, “Fast and Accurate Neural CRF Constituency Parsing,” in Pro-

ceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20.
International Joint Conferences on Artificial Intelligence Organization, 2020.

[71] X. Wang and K. Tu, “Second-Order Neural Dependency Parsing with Message Passing and
End-to-End Training,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the

Association for Computational Linguistics and the 10th International Joint Conference on Natural

Language Processing. Association for Computational Linguistics, 2020.

70

https://arxiv.org/abs/2401.04088
https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2023.ijcnlp-short.7/
https://aclanthology.org/2023.ijcnlp-short.7/
https://aclanthology.org/2024.eacl-short.21/
https://dumps.wikimedia.org
https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368
https://aclanthology.org/W18-5446/\csq@oqmark
https://aclanthology.org/W18-5446/\csq@oqmark
https://aclanthology.org/P19-1230/
https://www.ijcai.org/Proceedings/2020/560
https://aclanthology.org/2020.aacl-main.12/
https://aclanthology.org/2020.aacl-main.12/

[72] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott,
L. Zettlemoyer, and V. Stoyanov, “Unsupervised Cross-lingual Representation Learning at
Scale,” in Proceedings of the 58th AnnualMeeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2020.

[73] G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán, A. Joulin, and E. Grave,
“CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data,” in Proceedings

of the Twelfth Language Resources and Evaluation Conference. European Language Resources
Association, 2020.

[74] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov, “Transformer-XL: Attentive
Language Models beyond a Fixed-Length Context,” in Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics. Association for Computational Linguistics,
2019.

[75] J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret, “The CoNLL 2007
Shared Task on Dependency Parsing,” in Proceedings of the 2007 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL). Association for Computational Linguistics, 2007.

[76] M. Strzyz, D. Vilares, and C. Gómez-Rodríguez, “Bracketing Encodings for 2-Planar Depen-
dency Parsing,” in Proceedings of the 28th International Conference on Computational Linguistics.
International Committee on Computational Linguistics, 2020.

[77] X.Wang, Y. Jiang, N. Bach, T.Wang, Z. Huang, F. Huang, and K. Tu, “Automated Concatenation
of Embeddings for Structured Prediction,” in Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers). Association for Computational Linguistics,
2021.

[78] M. Covington, “A Fundamental Algorithm for Dependency Parsing,” in Proceedings of the 39th

Annual ACM Southeast Cnference. Association for Computing Machinery, 2001.

[79] J. Nivre, D. Zeman, F. Ginter, and F. Tyers, “Universal Dependencies,” in Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics: Tutorial

Abstracts. Association for Computational Linguistics, 2017.

[80] H. Shavarani and A. Sarkar, “SpEL: Structured Prediction for Entity Linking,” in Proceedings

of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2023.

[81] A. Ramponi, R. van der Goot, R. Lombardo, and B. Plank, “Biomedical Event Extraction as
Sequence Labeling,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP). Association for Computational Linguistics, 2020.

71

https://aclanthology.org/2020.acl-main.747/
https://aclanthology.org/2020.acl-main.747/
https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/P19-1285/
https://aclanthology.org/P19-1285/
https://aclanthology.org/D07-1096/
https://aclanthology.org/D07-1096/
https://aclanthology.org/2020.coling-main.223/
https://aclanthology.org/2020.coling-main.223/
https://aclanthology.org/2021.acl-long.206/
https://aclanthology.org/2021.acl-long.206/
https://ai1.ai.uga.edu/mc/dparser/dgpacmnew.pdf
https://aclanthology.org/E17-5001/
https://aclanthology.org/2023.emnlp-main.686/
https://aclanthology.org/2020.emnlp-main.431/
https://aclanthology.org/2020.emnlp-main.431/

[82] S. Zhou and T. Qian, “On the Strength of Sequence Labeling and Generative Models for Aspect
Sentiment Triplet Extraction,” in Findings of the Association for Computational Linguistics: ACL

2023. Association for Computational Linguistics, 2023.

[83] Z. Huang, P. Cao, J. Zhao, and K. Liu, “DiffusionSL: Sequence Labeling via Tag Diffusion Pro-
cess,” in Findings of the Association for Computational Linguistics: EMNLP 2023. Association
for Computational Linguistics, 2023.

[84] Y. Tong, G. Chen, G. Zheng, R. Li, and J. Dazhi, “When Generative Adversarial Networks Meet
Sequence Labeling Challenges,” in Proceedings of the 2024 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, 2024.

[85] A. L. Maas, “Rectifier Nonlinearities Improve Neural Network Acoustic Models,” in Proceedings

of the International Conference on Machine Learning, 2013.

[86] I. Loshchilov and F. Hutter, “hrefhttps://openreview.net/forum?id=Bkg6RiCqY7Decoupled
Weight Decay Regularization,” in International Conference on Learning Representations, 2019.

[87] E. Zitzler, J. Knowles, and L.Thiele,Quality Assessment of Pareto Set Approximations. Springer
Berlin Heidelberg, 2008.

72

https://aclanthology.org/2023.findings-acl.762/
https://aclanthology.org/2023.findings-acl.762/
https://aclanthology.org/2023.findings-emnlp.860/
https://aclanthology.org/2023.findings-emnlp.860/
https://aclanthology.org/2024.emnlp-main.593/
https://aclanthology.org/2024.emnlp-main.593/
https://www.bibsonomy.org/bibtex/2479ee3123c43b4a7eb5a329d93e7360f/t_seizinger
https://doi.org/10.1007/978-3-540-88908-3_14

	Introduction
	Thesis' overview: Goals and report structure
	Methodology
	Tools, materials and resources

	Background
	Neural networks for NLP
	Word embeddings
	Recurrent Neural Networks
	Transformer block
	Large Language Models

	Graph Parsing
	Graph-based approaches
	Transition-based systems

	Sequence-labeling for Graph Parsing
	Motivation
	Formalization

	Unbounded linearizations
	Positional encodings
	Bracketing encoding

	Bounded linearizations
	4k-bit encoding
	6k-bit encoding

	Framework and Experiments
	Neural framework
	Evaluation metrics
	Training configuration
	Datasets

	Results
	Performance evaluation
	Speed analysis

	Conclusion
	Glossary
	Acronyms
	Symbols
	Bibliography

